These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25085734)

  • 21. Honey-sensitive Pseudomonas aeruginosa mutants are impaired in catalase A.
    Bolognese F; Bistoletti M; Barbieri P; Orlandi VT
    Microbiology (Reading); 2016 Sep; 162(9):1554-1562. PubMed ID: 27516083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.
    Pezzoni M; Pizarro RA; Costa CS
    J Photochem Photobiol B; 2014 Feb; 131():53-64. PubMed ID: 24491420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.
    Su S; Panmanee W; Wilson JJ; Mahtani HK; Li Q; Vanderwielen BD; Makris TM; Rogers M; McDaniel C; Lipscomb JD; Irvin RT; Schurr MJ; Lancaster JR; Kovall RA; Hassett DJ
    PLoS One; 2014; 9(3):e91813. PubMed ID: 24663218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Annotation of a Presumed Nitronate Monoxygenase Reveals a New Class of NADH:Quinone Reductases.
    Ball J; Salvi F; Gadda G
    J Biol Chem; 2016 Sep; 291(40):21160-21170. PubMed ID: 27502282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the NADH:quinone oxidoreductase WrbA from Escherichia coli.
    Andrade SL; Patridge EV; Ferry JG; Einsle O
    J Bacteriol; 2007 Dec; 189(24):9101-7. PubMed ID: 17951395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The human dioxin-inducible NAD(P)H: quinone oxidoreductase cDNA-encoded protein expressed in COS-1 cells is identical to diaphorase 4.
    Shaw PM; Reiss A; Adesnik M; Nebert DW; Schembri J; Jaiswal AK
    Eur J Biochem; 1991 Jan; 195(1):171-6. PubMed ID: 1899380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MdaB and NfrA, Two Novel Reductases Important in the Survival and Persistence of the Major Enteropathogen Campylobacter jejuni.
    Nasher F; Taylor AJ; Elmi A; Lehri B; Ijaz UZ; Baker D; Goram R; Lynham S; Singh D; Stabler R; Kelly DJ; Gundogdu O; Wren BW
    J Bacteriol; 2022 Jan; 204(1):e0042121. PubMed ID: 34606373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations.
    den Braver-Sewradj SP; den Braver MW; Toorneman RM; van Leeuwen S; Zhang Y; Dekker SJ; Vermeulen NPE; Commandeur JNM; Vos JC
    Chem Res Toxicol; 2018 Feb; 31(2):116-126. PubMed ID: 29281794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide.
    Hassett DJ; Ma JF; Elkins JG; McDermott TR; Ochsner UA; West SE; Huang CT; Fredericks J; Burnett S; Stewart PS; McFeters G; Passador L; Iglewski BH
    Mol Microbiol; 1999 Dec; 34(5):1082-93. PubMed ID: 10594832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance.
    Shin DH; Choi YS; Cho YH
    J Bacteriol; 2008 Apr; 190(8):2663-70. PubMed ID: 18165301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide.
    Brown SM; Howell ML; Vasil ML; Anderson AJ; Hassett DJ
    J Bacteriol; 1995 Nov; 177(22):6536-44. PubMed ID: 7592431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specificity of human aldo-keto reductases, NAD(P)H:quinone oxidoreductase, and carbonyl reductases to redox-cycle polycyclic aromatic hydrocarbon diones and 4-hydroxyequilenin-o-quinone.
    Shultz CA; Quinn AM; Park JH; Harvey RG; Bolton JL; Maser E; Penning TM
    Chem Res Toxicol; 2011 Dec; 24(12):2153-66. PubMed ID: 21910479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular quinone reduction in Sporotrichum pulverulentum by a NAD(P)H:quinone oxidoreductase: possible role in vanillic acid catabolism.
    Buswell JA; Hamp S; Eriksson KE
    FEBS Lett; 1979 Dec; 108(1):229-32. PubMed ID: 520550
    [No Abstract]   [Full Text] [Related]  

  • 34. Quinone reductases multitasking in the metabolic world.
    Ross D
    Drug Metab Rev; 2004 Oct; 36(3-4):639-54. PubMed ID: 15554240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DT-diaphorase-catalyzed two-electron reduction of various p-benzoquinone- and 1,4-naphthoquinone epoxides.
    Brunmark A; Cadenas E; Segura-Aguilar J; Lind C; Ernster L
    Free Radic Biol Med; 1988; 5(3):133-43. PubMed ID: 3151071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pseudomonas aeruginosa thiol peroxidase protects against hydrogen peroxide toxicity and displays atypical patterns of gene regulation.
    Somprasong N; Jittawuttipoka T; Duang-Nkern J; Romsang A; Chaiyen P; Schweizer HP; Vattanaviboon P; Mongkolsuk S
    J Bacteriol; 2012 Aug; 194(15):3904-12. PubMed ID: 22609922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristic differences in the mode of quinone reduction and stability between energy-coupled and -uncoupled NADH-quinone reductases from bacterial respiratory chain.
    Unemoto T; Miyoshi T; Hayashi M
    FEBS Lett; 1992 Jul; 306(1):51-3. PubMed ID: 1628743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic Investigation of a Presumed Nitronate Monooxygenase from Pseudomonas aeruginosa PAO1 Establishes a New Class of NAD(P)H:Quinone Reductases.
    Reis RAG; Salvi F; Williams I; Gadda G
    Biochemistry; 2019 Jun; 58(22):2594-2607. PubMed ID: 31075192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14.
    Kim SH; Lee BY; Lau GW; Cho YH
    J Microbiol Biotechnol; 2009 Dec; 19(12):1520-6. PubMed ID: 20075613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.