BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25085756)

  • 1. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice.
    Bailey JF; Hargens AR; Cheng KK; Lotz JC
    J Biomech; 2014 Sep; 47(12):2983-8. PubMed ID: 25085756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study.
    Laws CJ; Berg-Johansen B; Hargens AR; Lotz JC
    Eur Spine J; 2016 Sep; 25(9):2889-97. PubMed ID: 26403291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability.
    Bailey JF; Miller SL; Khieu K; O'Neill CW; Healey RM; Coughlin DG; Sayson JV; Chang DG; Hargens AR; Lotz JC
    Spine J; 2018 Jan; 18(1):7-14. PubMed ID: 28962911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical changes in the lumbar spine following spaceflight and factors associated with postspaceflight disc herniation.
    Bailey JF; Nyayapati P; Johnson GTA; Dziesinski L; Scheffler AW; Crawford R; Scheuring R; O'Neill CW; Chang D; Hargens AR; Lotz JC
    Spine J; 2022 Feb; 22(2):197-206. PubMed ID: 34343665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of simulated microgravity on intervertebral disc degeneration.
    Jin L; Feng G; Reames DL; Shimer AL; Shen FH; Li X
    Spine J; 2013 Mar; 13(3):235-42. PubMed ID: 23537452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurosurgery and spinal adaptations in spaceflight: A literature review.
    Lazzari ZT; Aria KM; Menger R
    Clin Neurol Neurosurg; 2021 Aug; 207():106755. PubMed ID: 34126454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in intervertebral disc cross-sectional area with bed rest and space flight.
    LeBlanc AD; Evans HJ; Schneider VS; Wendt RE; Hedrick TD
    Spine (Phila Pa 1976); 1994 Apr; 19(7):812-7. PubMed ID: 8202800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments.
    Berg-Johansen B; Liebenberg EC; Li A; Macias BR; Hargens AR; Lotz JC
    J Orthop Res; 2016 Jan; 34(1):48-57. PubMed ID: 26285046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathophysiology of low back pain during exposure to microgravity.
    Sayson JV; Hargens AR
    Aviat Space Environ Med; 2008 Apr; 79(4):365-73. PubMed ID: 18457293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar Spine Paraspinal Muscle and Intervertebral Disc Height Changes in Astronauts After Long-Duration Spaceflight on the International Space Station.
    Chang DG; Healey RM; Snyder AJ; Sayson JV; Macias BR; Coughlin DG; Bailey JF; Parazynski SE; Lotz JC; Hargens AR
    Spine (Phila Pa 1976); 2016 Dec; 41(24):1917-1924. PubMed ID: 27779600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk of herniated nucleus pulposus among U.S. astronauts.
    Johnston SL; Campbell MR; Scheuring R; Feiveson AH
    Aviat Space Environ Med; 2010 Jun; 81(6):566-74. PubMed ID: 20540448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preflight, In-Flight, and Postflight Imaging of the Cervical and Lumbar Spine in Astronauts.
    Harrison MF; Garcia KM; Sargsyan AE; Ebert D; Riascos-Castaneda RF; Dulchavsky SA
    Aerosp Med Hum Perform; 2018 Jan; 89(1):32-40. PubMed ID: 29233242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a microgravity SkinSuit on lumbar geometry and kinematics.
    Breen A; Carvil P; Green DA; Russomano T; Breen A
    Eur Spine J; 2023 Mar; 32(3):839-847. PubMed ID: 36645514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphologic comparison of cervical, thoracic, lumbar intervertebral discs of cynomolgus monkey (Macaca fascicularis).
    Longo UG; Ripalda P; Denaro V; Forriol F
    Eur Spine J; 2006 Dec; 15(12):1845-51. PubMed ID: 16374650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs.
    Koeller W; Meier W; Hartmann F
    Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a 5-day space flight on the immature rat spine.
    Sinha RK; Shah SA; Hume EL; Tuan RS
    Spine J; 2002; 2(4):239-43. PubMed ID: 14589473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aging mouse partially models the aging human spine: lumbar and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice.
    Holguin N; Aguilar R; Harland RA; Bomar BA; Silva MJ
    J Appl Physiol (1985); 2014 Jun; 116(12):1551-60. PubMed ID: 24790018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.