These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25085756)

  • 1. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice.
    Bailey JF; Hargens AR; Cheng KK; Lotz JC
    J Biomech; 2014 Sep; 47(12):2983-8. PubMed ID: 25085756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study.
    Laws CJ; Berg-Johansen B; Hargens AR; Lotz JC
    Eur Spine J; 2016 Sep; 25(9):2889-97. PubMed ID: 26403291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability.
    Bailey JF; Miller SL; Khieu K; O'Neill CW; Healey RM; Coughlin DG; Sayson JV; Chang DG; Hargens AR; Lotz JC
    Spine J; 2018 Jan; 18(1):7-14. PubMed ID: 28962911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical changes in the lumbar spine following spaceflight and factors associated with postspaceflight disc herniation.
    Bailey JF; Nyayapati P; Johnson GTA; Dziesinski L; Scheffler AW; Crawford R; Scheuring R; O'Neill CW; Chang D; Hargens AR; Lotz JC
    Spine J; 2022 Feb; 22(2):197-206. PubMed ID: 34343665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of simulated microgravity on intervertebral disc degeneration.
    Jin L; Feng G; Reames DL; Shimer AL; Shen FH; Li X
    Spine J; 2013 Mar; 13(3):235-42. PubMed ID: 23537452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurosurgery and spinal adaptations in spaceflight: A literature review.
    Lazzari ZT; Aria KM; Menger R
    Clin Neurol Neurosurg; 2021 Aug; 207():106755. PubMed ID: 34126454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in intervertebral disc cross-sectional area with bed rest and space flight.
    LeBlanc AD; Evans HJ; Schneider VS; Wendt RE; Hedrick TD
    Spine (Phila Pa 1976); 1994 Apr; 19(7):812-7. PubMed ID: 8202800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments.
    Berg-Johansen B; Liebenberg EC; Li A; Macias BR; Hargens AR; Lotz JC
    J Orthop Res; 2016 Jan; 34(1):48-57. PubMed ID: 26285046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathophysiology of low back pain during exposure to microgravity.
    Sayson JV; Hargens AR
    Aviat Space Environ Med; 2008 Apr; 79(4):365-73. PubMed ID: 18457293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar Spine Paraspinal Muscle and Intervertebral Disc Height Changes in Astronauts After Long-Duration Spaceflight on the International Space Station.
    Chang DG; Healey RM; Snyder AJ; Sayson JV; Macias BR; Coughlin DG; Bailey JF; Parazynski SE; Lotz JC; Hargens AR
    Spine (Phila Pa 1976); 2016 Dec; 41(24):1917-1924. PubMed ID: 27779600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk of herniated nucleus pulposus among U.S. astronauts.
    Johnston SL; Campbell MR; Scheuring R; Feiveson AH
    Aviat Space Environ Med; 2010 Jun; 81(6):566-74. PubMed ID: 20540448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preflight, In-Flight, and Postflight Imaging of the Cervical and Lumbar Spine in Astronauts.
    Harrison MF; Garcia KM; Sargsyan AE; Ebert D; Riascos-Castaneda RF; Dulchavsky SA
    Aerosp Med Hum Perform; 2018 Jan; 89(1):32-40. PubMed ID: 29233242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a microgravity SkinSuit on lumbar geometry and kinematics.
    Breen A; Carvil P; Green DA; Russomano T; Breen A
    Eur Spine J; 2023 Mar; 32(3):839-847. PubMed ID: 36645514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphologic comparison of cervical, thoracic, lumbar intervertebral discs of cynomolgus monkey (Macaca fascicularis).
    Longo UG; Ripalda P; Denaro V; Forriol F
    Eur Spine J; 2006 Dec; 15(12):1845-51. PubMed ID: 16374650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs.
    Koeller W; Meier W; Hartmann F
    Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a 5-day space flight on the immature rat spine.
    Sinha RK; Shah SA; Hume EL; Tuan RS
    Spine J; 2002; 2(4):239-43. PubMed ID: 14589473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aging mouse partially models the aging human spine: lumbar and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice.
    Holguin N; Aguilar R; Harland RA; Bomar BA; Silva MJ
    J Appl Physiol (1985); 2014 Jun; 116(12):1551-60. PubMed ID: 24790018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.