These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 25085856)
1. A tough, precision-porous hydrogel scaffold: ophthalmologic applications. Teng W; Long TJ; Zhang Q; Yao K; Shen TT; Ratner BD Biomaterials; 2014 Oct; 35(32):8916-26. PubMed ID: 25085856 [TBL] [Abstract][Full Text] [Related]
2. Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Galperin A; Long TJ; Ratner BD Biomacromolecules; 2010 Oct; 11(10):2583-92. PubMed ID: 20836521 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
4. Poly (L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility. Chu J; Zeng S; Gao L; Groth T; Li Z; Kong J; Zhao M; Li L Int J Artif Organs; 2016 Oct; 39(8):435-443. PubMed ID: 27646631 [TBL] [Abstract][Full Text] [Related]
5. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685 [TBL] [Abstract][Full Text] [Related]
8. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams. Haryanto ; Singh D; Huh PH; Kim SC J Biomed Mater Res A; 2016 Jan; 104(1):48-56. PubMed ID: 26148840 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation. Lim JI; Im H; Lee WK J Biomater Sci Polym Ed; 2015; 26(1):32-41. PubMed ID: 25410721 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold. Song K; Li L; Yan X; Zhang Y; Li R; Wang Y; Wang L; Wang H; Liu T J Mater Sci Mater Med; 2016 Jun; 27(6):114. PubMed ID: 27180235 [TBL] [Abstract][Full Text] [Related]
11. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and fabrication of a degradable poly(N-isopropyl acrylamide) scaffold for tissue engineering applications. Galperin A; Long TJ; Garty S; Ratner BD J Biomed Mater Res A; 2013 Mar; 101(3):775-86. PubMed ID: 22961921 [TBL] [Abstract][Full Text] [Related]
13. Development of poly (1,8 octanediol-co-citrate) and poly (acrylic acid) nanofibrous scaffolds for wound healing applications. Goins A; Ramaswamy V; Dirr E; Dulany K; Irby S; Webb A; Allen J Biomed Mater; 2017 Oct; 13(1):015002. PubMed ID: 29072193 [TBL] [Abstract][Full Text] [Related]
14. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Samourides A; Browning L; Hearnden V; Chen B Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046 [TBL] [Abstract][Full Text] [Related]
15. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
16. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837 [TBL] [Abstract][Full Text] [Related]
17. Glucuronoxylan-based quince seed hydrogel: A promising scaffold for tissue engineering applications. Guzelgulgen M; Ozkendir-Inanc D; Yildiz UH; Arslan-Yildiz A Int J Biol Macromol; 2021 Jun; 180():729-738. PubMed ID: 33757854 [TBL] [Abstract][Full Text] [Related]
18. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Dorati R; Colonna C; Tomasi C; Genta I; Bruni G; Conti B Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():130-9. PubMed ID: 24268242 [TBL] [Abstract][Full Text] [Related]
20. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Bian S; He M; Sui J; Cai H; Sun Y; Liang J; Fan Y; Zhang X Colloids Surf B Biointerfaces; 2016 Apr; 140():392-402. PubMed ID: 26780252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]