BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 25085992)

  • 1. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming.
    Zwaans BM; Lombard DB
    Dis Model Mech; 2014 Sep; 7(9):1023-32. PubMed ID: 25085992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interplay between MYC and HIF in the Warburg effect.
    Dang CV
    Ernst Schering Found Symp Proc; 2007; (4):35-53. PubMed ID: 18811052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer.
    Yeung SJ; Pan J; Lee MH
    Cell Mol Life Sci; 2008 Dec; 65(24):3981-99. PubMed ID: 18766298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1.
    Kim JW; Gao P; Liu YC; Semenza GL; Dang CV
    Mol Cell Biol; 2007 Nov; 27(21):7381-93. PubMed ID: 17785433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism.
    Sebastián C; Zwaans BM; Silberman DM; Gymrek M; Goren A; Zhong L; Ram O; Truelove J; Guimaraes AR; Toiber D; Cosentino C; Greenson JK; MacDonald AI; McGlynn L; Maxwell F; Edwards J; Giacosa S; Guccione E; Weissleder R; Bernstein BE; Regev A; Shiels PG; Lombard DB; Mostoslavsky R
    Cell; 2012 Dec; 151(6):1185-99. PubMed ID: 23217706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential role of the N-MYC downstream-regulated gene family in reprogramming cancer metabolism under hypoxia.
    Lee GY; Chun YS; Shin HW; Park JW
    Oncotarget; 2016 Aug; 7(35):57442-57451. PubMed ID: 27447861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation.
    Yu L; Lu M; Jia D; Ma J; Ben-Jacob E; Levine H; Kaipparettu BA; Onuchic JN
    Cancer Res; 2017 Apr; 77(7):1564-1574. PubMed ID: 28202516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia, HIF1 and glucose metabolism in the solid tumour.
    Denko NC
    Nat Rev Cancer; 2008 Sep; 8(9):705-13. PubMed ID: 19143055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells.
    Sharma BK; Kolhe R; Black SM; Keller JR; Mivechi NF; Satyanarayana A
    FASEB J; 2016 Jan; 30(1):262-75. PubMed ID: 26330493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MYC-induced cancer cell energy metabolism and therapeutic opportunities.
    Dang CV; Le A; Gao P
    Clin Cancer Res; 2009 Nov; 15(21):6479-83. PubMed ID: 19861459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural compounds regulate glycolysis in hypoxic tumor microenvironment.
    Gao JL; Chen YG
    Biomed Res Int; 2015; 2015():354143. PubMed ID: 25685782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting aberrant cancer metabolism - The role of sirtuins.
    Kleszcz R; Paluszczak J; Baer-Dubowska W
    Pharmacol Rep; 2015 Dec; 67(6):1068-80. PubMed ID: 26481524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T; Marini A; Giannoni E; Taddei ML; Gandellini P; De Donatis A; Lanciotti M; Serni S; Cirri P; Chiarugi P
    Cancer Res; 2012 Oct; 72(19):5130-40. PubMed ID: 22850421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Hederin inhibits the growth of lung cancer A549 cells
    Fang C; Liu Y; Chen L; Luo Y; Cui Y; Zhang N; Liu P; Zhou M; Xie Y
    Pharm Biol; 2021 Dec; 59(1):11-20. PubMed ID: 33356727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon source metabolism and its regulation in cancer cells.
    Yin C; Qie S; Sang N
    Crit Rev Eukaryot Gene Expr; 2012; 22(1):17-35. PubMed ID: 22339657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Warburg effect in 2012.
    Bayley JP; Devilee P
    Curr Opin Oncol; 2012 Jan; 24(1):62-7. PubMed ID: 22123234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis.
    Wilde BR; Ayer DE
    Br J Cancer; 2015 Dec; 113(11):1529-33. PubMed ID: 26469830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.