These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25086004)

  • 1. Bias correction for selecting the minimal-error classifier from many machine learning models.
    Ding Y; Tang S; Liao SG; Jia J; Oesterreich S; Lin Y; Tseng GC
    Bioinformatics; 2014 Nov; 30(22):3152-8. PubMed ID: 25086004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.
    Kim S; Lin CW; Tseng GC
    Bioinformatics; 2016 Jul; 32(13):1966-73. PubMed ID: 27153719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaDCN: meta-analysis framework for differential co-expression network detection with an application in breast cancer.
    Zhu L; Ding Y; Chen CY; Wang L; Huo Z; Kim S; Sotiriou C; Oesterreich S; Tseng GC
    Bioinformatics; 2017 Apr; 33(8):1121-1129. PubMed ID: 28031185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analytic principal component analysis in integrative omics application.
    Kim S; Kang D; Huo Z; Park Y; Tseng GC
    Bioinformatics; 2018 Apr; 34(8):1321-1328. PubMed ID: 29186328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
    Zou M; Liu Z; Zhang XS; Wang Y
    Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias in error estimation when using cross-validation for model selection.
    Varma S; Simon R
    BMC Bioinformatics; 2006 Feb; 7():91. PubMed ID: 16504092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meta-analytic framework for liquid association.
    Wang L; Liu S; Ding Y; Yuan SS; Ho YY; Tseng GC
    Bioinformatics; 2017 Jul; 33(14):2140-2147. PubMed ID: 28334340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification based upon gene expression data: bias and precision of error rates.
    Wood IA; Visscher PM; Mengersen KL
    Bioinformatics; 2007 Jun; 23(11):1363-70. PubMed ID: 17392326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning algorithm validation with a limited sample size.
    Vabalas A; Gowen E; Poliakoff E; Casson AJ
    PLoS One; 2019; 14(11):e0224365. PubMed ID: 31697686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel bi-level meta-analysis approach: applied to biological pathway analysis.
    Nguyen T; Tagett R; Donato M; Mitrea C; Draghici S
    Bioinformatics; 2016 Feb; 32(3):409-16. PubMed ID: 26471455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Model Validation for Early Stage Studies with Small Sample Sizes.
    Larracy R; Phinyomark A; Scheme E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2314-2319. PubMed ID: 34891749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HyDRA: gene prioritization via hybrid distance-score rank aggregation.
    Kim M; Farnoud F; Milenkovic O
    Bioinformatics; 2015 Apr; 31(7):1034-43. PubMed ID: 25411330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery.
    Watson OP; Cortes-Ciriano I; Taylor AR; Watson JA
    Bioinformatics; 2019 Nov; 35(22):4656-4663. PubMed ID: 31070704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-analysis for pathway enrichment analysis when combining multiple genomic studies.
    Shen K; Tseng GC
    Bioinformatics; 2010 May; 26(10):1316-23. PubMed ID: 20410053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised learning improves gene expression-based prediction of cancer recurrence.
    Shi M; Zhang B
    Bioinformatics; 2011 Nov; 27(21):3017-23. PubMed ID: 21893520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance reproducibility index for classification.
    Yousefi MR; Dougherty ER
    Bioinformatics; 2012 Nov; 28(21):2824-33. PubMed ID: 22954625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction.
    Shi P; Ray S; Zhu Q; Kon MA
    BMC Bioinformatics; 2011 Sep; 12():375. PubMed ID: 21939564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.