BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25086020)

  • 1. Establishing a fiber-optic-based optical neural interface.
    Adamantidis AR; Zhang F; de Lecea L; Deisseroth K
    Cold Spring Harb Protoc; 2014 Aug; 2014(8):839-44. PubMed ID: 25086020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetics: opsins and optical interfaces in neuroscience.
    Adamantidis AR; Zhang F; de Lecea L; Deisseroth K
    Cold Spring Harb Protoc; 2014 Aug; 2014(8):815-22. PubMed ID: 25086025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fiber-optic imaging and manipulation of neural activity during animal behavior.
    Miyamoto D; Murayama M
    Neurosci Res; 2016 Feb; 103():1-9. PubMed ID: 26427958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ancestral Adeno-Associated Virus Vector Delivery of Opsins to Spiral Ganglion Neurons: Implications for Optogenetic Cochlear Implants.
    Duarte MJ; Kanumuri VV; Landegger LD; Tarabichi O; Sinha S; Meng X; Hight AE; Kozin ED; Stankovic KM; Brown MC; Lee DJ
    Mol Ther; 2018 Aug; 26(8):1931-1939. PubMed ID: 30017876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue.
    Ung K; Arenkiel BR
    J Vis Exp; 2012 Oct; (68):e50004. PubMed ID: 23128465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread functional opsin transduction in the rat cortex via convection-enhanced delivery optimized for horizontal spread.
    Yu Z; Nurmikko A; Ozden I
    J Neurosci Methods; 2017 Nov; 291():69-82. PubMed ID: 28807859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal Functional Neuroimaging by Simultaneous BOLD fMRI and Fiber-Optic Calcium Recordings and Optogenetic Control.
    Albers F; Wachsmuth L; van Alst TM; Faber C
    Mol Imaging Biol; 2018 Apr; 20(2):171-182. PubMed ID: 29027094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 12. Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy.
    Shin Y; Kwon HS
    Phys Med Biol; 2016 Mar; 61(6):2265-82. PubMed ID: 26914289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.
    Pawela C; DeYoe E; Pashaie R
    Methods Mol Biol; 2016; 1408():227-41. PubMed ID: 26965126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.
    Dhakal KR; Gu L; Shivalingaiah S; Dennis TS; Morris-Bobzean SA; Li T; Perrotti LI; Mohanty SK
    PLoS One; 2014; 9(11):e111488. PubMed ID: 25383687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber.
    Adelsberger H; Grienberger C; Stroh A; Konnerth A
    Cold Spring Harb Protoc; 2014 Oct; 2014(10):pdb.prot084145. PubMed ID: 25275110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
    Kwon KY; Sirowatka B; Weber A; Li W
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single optical fiber probe for fluorescence detection and optogenetic stimulation.
    Pashaie R; Falk R
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):268-80. PubMed ID: 23060317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber Optic-Based Photostimulation of Larval Zebrafish.
    Arrenberg AB
    Methods Mol Biol; 2016; 1451():343-54. PubMed ID: 27464820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications.
    Wang J; Wagner F; Borton DA; Zhang J; Ozden I; Burwell RD; Nurmikko AV; van Wagenen R; Diester I; Deisseroth K
    J Neural Eng; 2012 Feb; 9(1):016001. PubMed ID: 22156042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites.
    Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H
    J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.