These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25086020)

  • 41. Fabrication of multipoint side-firing optical fiber by laser micro-ablation.
    Nguyen H; Parvez Arnob MM; Becker AT; Wolfe JC; Hogan MK; Horner PJ; Shih WC
    Opt Lett; 2017 May; 42(9):1808-1811. PubMed ID: 28454166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques.
    Gong X; Mendoza-Halliday D; Ting JT; Kaiser T; Sun X; Bastos AM; Wimmer RD; Guo B; Chen Q; Zhou Y; Pruner M; Wu CW; Park D; Deisseroth K; Barak B; Boyden ES; Miller EK; Halassa MM; Fu Z; Bi G; Desimone R; Feng G
    Neuron; 2020 Jul; 107(1):38-51.e8. PubMed ID: 32353253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optopatcher--an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation.
    Katz Y; Yizhar O; Staiger J; Lampl I
    J Neurosci Methods; 2013 Mar; 214(1):113-7. PubMed ID: 23370312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light.
    Tsunematsu T; Tanaka KF; Yamanaka A; Koizumi A
    Neurosci Res; 2013 Jan; 75(1):23-8. PubMed ID: 22868039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bicistronic Expression of a High-Performance Calcium Indicator and Opsin for All-Optical Stimulation and Imaging at Cellular Resolution.
    LaFosse PK; Zhou Z; Friedman NG; Deng Y; Li AJ; Akitake B; Histed MH
    eNeuro; 2023 Mar; 10(3):. PubMed ID: 36858826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience.
    Ting JT; Feng G
    Behav Brain Res; 2013 Oct; 255():3-18. PubMed ID: 23473879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
    McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA
    Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins.
    Forli A; Pisoni M; Printz Y; Yizhar O; Fellin T
    Elife; 2021 May; 10():. PubMed ID: 34032211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice.
    Accanto N; Blot FGC; Lorca-Cámara A; Zampini V; Bui F; Tourain C; Badt N; Katz O; Emiliani V
    Neuron; 2023 Jan; 111(2):176-189.e6. PubMed ID: 36395773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fiberless Optogenetics.
    Chowdhury S; Yamanaka A
    Adv Exp Med Biol; 2021; 1293():407-416. PubMed ID: 33398829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Principles and applications of optogenetics in neuroscience].
    Dugué GP; Tricoire L
    Med Sci (Paris); 2015 Mar; 31(3):291-303. PubMed ID: 25855283
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Optogenetics brings hidden neural mechanisms into the light and could become a future therapy].
    Axelsen TM; Navntoft CA; Christiansen SH; Dreyer JK; Sørensen JB; Gether U; Woldbye DP
    Ugeskr Laeger; 2015 Aug; 177(34):. PubMed ID: 26320592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-performance optical control of GPCR signaling by bistable animal opsins MosOpn3 and LamPP in a molecular property-dependent manner.
    Koyanagi M; Shen B; Nagata T; Sun L; Wada S; Kamimura S; Kage-Nakadai E; Terakita A
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2204341119. PubMed ID: 36417444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope.
    Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V
    Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual stimulus presentation using fiber optics in the MRI scanner.
    Huang RS; Sereno MI
    J Neurosci Methods; 2008 Mar; 169(1):76-83. PubMed ID: 18187204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-wavelength light emitting diode-based disposable optrode array for in vivo optogenetic modulation.
    Jeon S; Kim JH; Lee H; Kim YK; Jun SB; Lee SH; Ji CH
    J Biophotonics; 2019 May; 12(5):e201800343. PubMed ID: 30588762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In-vivo optogenetics and pharmacology in deep intracellular recordings.
    Katz Y; Sokoletsky M; Lampl I
    J Neurosci Methods; 2019 Sep; 325():108324. PubMed ID: 31288037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Continuous monitoring of blood adriamycin using a fiber optic chemical sensor in rabbit].
    Lu WX; Chen J
    Yao Xue Xue Bao; 2002 Jul; 37(7):543-7. PubMed ID: 12914325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetics: 10 years of microbial opsins in neuroscience.
    Deisseroth K
    Nat Neurosci; 2015 Sep; 18(9):1213-25. PubMed ID: 26308982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.