These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 25086217)
1. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase. Mashhadi Z; Boeglin WE; Brash AR Biochimie; 2014 Nov; 106():180-3. PubMed ID: 25086217 [TBL] [Abstract][Full Text] [Related]
2. On the relationship of coral allene oxide synthase to catalase. A single active site mutation that induces catalase activity in coral allene oxide synthase. Tosha T; Uchida T; Brash AR; Kitagawa T J Biol Chem; 2006 May; 281(18):12610-7. PubMed ID: 16513636 [TBL] [Abstract][Full Text] [Related]
3. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides. Mashhadi Z; Newcomer ME; Brash AR Chembiochem; 2016 Nov; 17(21):2000-2006. PubMed ID: 27653176 [TBL] [Abstract][Full Text] [Related]
4. Role of the conserved distal heme asparagine of coral allene oxide synthase (Asn137) and human catalase (Asn148): mutations affect the rate but not the essential chemistry of the enzymatic transformations. Gao B; Boeglin WE; Brash AR Arch Biochem Biophys; 2008 Sep; 477(2):285-90. PubMed ID: 18652800 [TBL] [Abstract][Full Text] [Related]
5. A molecular dynamics examination on mutation-induced catalase activity in coral allene oxide synthase. De Luna P; Bushnell EA; Gauld JW J Phys Chem B; 2013 Nov; 117(47):14635-41. PubMed ID: 24164352 [TBL] [Abstract][Full Text] [Related]
6. Role of the oxyferrous heme intermediate and distal side adduct radical in the catalase activity of Mycobacterium tuberculosis KatG revealed by the W107F mutant. Zhao X; Yu S; Ranguelova K; Suarez J; Metlitsky L; Schelvis JP; Magliozzo RS J Biol Chem; 2009 Mar; 284(11):7030-7. PubMed ID: 19139098 [TBL] [Abstract][Full Text] [Related]
7. Unusual Cys-Tyr covalent bond in a large catalase. Díaz A; Horjales E; Rudiño-Piñera E; Arreola R; Hansberg W J Mol Biol; 2004 Sep; 342(3):971-85. PubMed ID: 15342250 [TBL] [Abstract][Full Text] [Related]
8. The structure and peroxidase activity of a 33-kDa catalase-related protein from Mycobacterium avium ssp. paratuberculosis. Pakhomova S; Gao B; Boeglin WE; Brash AR; Newcomer ME Protein Sci; 2009 Dec; 18(12):2559-68. PubMed ID: 19827095 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the activities of catalase-peroxidase HPI of Escherichia coli by site-directed mutagenesis. Hillar A; Peters B; Pauls R; Loboda A; Zhang H; Mauk AG; Loewen PC Biochemistry; 2000 May; 39(19):5868-75. PubMed ID: 10801338 [TBL] [Abstract][Full Text] [Related]
10. Structure of catalase-A from Saccharomyces cerevisiae. Maté MJ; Zamocky M; Nykyri LM; Herzog C; Alzari PM; Betzel C; Koller F; Fita I J Mol Biol; 1999 Feb; 286(1):135-49. PubMed ID: 9931255 [TBL] [Abstract][Full Text] [Related]
11. An ionizable active-site tryptophan imparts catalase activity to a peroxidase core. Loewen PC; Carpena X; Vidossich P; Fita I; Rovira C J Am Chem Soc; 2014 May; 136(20):7249-52. PubMed ID: 24785434 [TBL] [Abstract][Full Text] [Related]
13. Mutation of Val90 to His in the pseudoperoxidase from Leishmania major enhances peroxidase activity. Saha R; Bose M; Adak S Biochim Biophys Acta; 2013 Mar; 1834(3):651-7. PubMed ID: 23277197 [TBL] [Abstract][Full Text] [Related]
14. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy. Loewen PC; Villanueva J; Switala J; Donald LJ; Ivancich A Proteins; 2015 May; 83(5):853-66. PubMed ID: 25663126 [TBL] [Abstract][Full Text] [Related]
15. Modulation of heme orientation and binding by a single residue in catalase HPII of Escherichia coli. Jha V; Louis S; Chelikani P; Carpena X; Donald LJ; Fita I; Loewen PC Biochemistry; 2011 Mar; 50(12):2101-10. PubMed ID: 21332158 [TBL] [Abstract][Full Text] [Related]
16. Probing the role of Val228 on the catalytic activity of Scytalidium catalase. Goc G; Balci S; Yorke BA; Pearson AR; Yuzugullu Karakus Y Biochim Biophys Acta Proteins Proteom; 2021 Aug; 1869(8):140662. PubMed ID: 33887466 [TBL] [Abstract][Full Text] [Related]
17. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. Putnam CD; Arvai AS; Bourne Y; Tainer JA J Mol Biol; 2000 Feb; 296(1):295-309. PubMed ID: 10656833 [TBL] [Abstract][Full Text] [Related]
18. Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states. Bandara DM; Sono M; Bruce GS; Brash AR; Dawson JH J Inorg Biochem; 2011 Dec; 105(12):1786-94. PubMed ID: 22104301 [TBL] [Abstract][Full Text] [Related]
19. An electrical potential in the access channel of catalases enhances catalysis. Chelikani P; Carpena X; Fita I; Loewen PC J Biol Chem; 2003 Aug; 278(33):31290-6. PubMed ID: 12777389 [TBL] [Abstract][Full Text] [Related]
20. Evolution of catalases from bacteria to humans. Zamocky M; Furtmüller PG; Obinger C Antioxid Redox Signal; 2008 Sep; 10(9):1527-48. PubMed ID: 18498226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]