BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25086293)

  • 21. Colony-stimulating factor-1- and interleukin-34-derived macrophages differ in their susceptibility to Mycobacterium marinum.
    Popovic M; Yaparla A; Paquin-Proulx D; Koubourli DV; Webb R; Firmani M; Grayfer L
    J Leukoc Biol; 2019 Dec; 106(6):1257-1269. PubMed ID: 31535730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a
    Rougeot J; Torraca V; Zakrzewska A; Kanwal Z; Jansen HJ; Sommer F; Spaink HP; Meijer AH
    Front Immunol; 2019; 10():832. PubMed ID: 31110502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mycobacterium marinum infection drives foam cell differentiation in zebrafish infection models.
    Johansen MD; Kasparian JA; Hortle E; Britton WJ; Purdie AC; Oehlers SH
    Dev Comp Immunol; 2018 Nov; 88():169-172. PubMed ID: 30040967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of a macrophage receptor with collagenous structure (MARCO) in regulating monocyte/macrophage functions in ayu, Plecoglossus altivelis.
    Zhang L; Nie L; Cai SY; Chen J; Chen J
    Fish Shellfish Immunol; 2018 Mar; 74():141-151. PubMed ID: 29305330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macrophage-expressed perforins mpeg1 and mpeg1.2 have an anti-bacterial function in zebrafish.
    Benard EL; Racz PI; Rougeot J; Nezhinsky AE; Verbeek FJ; Spaink HP; Meijer AH
    J Innate Immun; 2015; 7(2):136-52. PubMed ID: 25247677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos.
    Davis JM; Clay H; Lewis JL; Ghori N; Herbomel P; Ramakrishnan L
    Immunity; 2002 Dec; 17(6):693-702. PubMed ID: 12479816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Over-expression of Tgs1 in Mycobacterium marinum enhances virulence in adult zebrafish.
    Liu DQ; Zhang JL; Pan ZF; Mai JT; Mei HJ; Dai Y; Zhang L; Wang QZ
    Int J Med Microbiol; 2020 Jan; 310(1):151378. PubMed ID: 31757695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High content analysis of granuloma histology and neutrophilic inflammation in adult zebrafish infected with Mycobacterium marinum.
    Cheng T; Kam JY; Johansen MD; Oehlers SH
    Micron; 2020 Feb; 129():102782. PubMed ID: 31775097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp.
    Fink IR; Benard EL; Hermsen T; Meijer AH; Forlenza M; Wiegertjes GF
    Mol Immunol; 2015 Feb; 63(2):381-93. PubMed ID: 25306962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Priming of innate antimycobacterial immunity by heat-killed
    Luukinen H; Hammarén MM; Vanha-Aho LM; Svorjova A; Kantanen L; Järvinen S; Luukinen BV; Dufour E; Rämet M; Hytönen VP; Parikka M
    Dis Model Mech; 2018 Jan; 11(1):. PubMed ID: 29208761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment.
    Fenaroli F; Westmoreland D; Benjaminsen J; Kolstad T; Skjeldal FM; Meijer AH; van der Vaart M; Ulanova L; Roos N; Nyström B; Hildahl J; Griffiths G
    ACS Nano; 2014 Jul; 8(7):7014-26. PubMed ID: 24945994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potentiation of P2RX7 as a host-directed strategy for control of mycobacterial infection.
    Matty MA; Knudsen DR; Walton EM; Beerman RW; Cronan MR; Pyle CJ; Hernandez RE; Tobin DM
    Elife; 2019 Jan; 8():. PubMed ID: 30693866
    [No Abstract]   [Full Text] [Related]  

  • 33. Mycobacterium marinum Erp is a virulence determinant required for cell wall integrity and intracellular survival.
    Cosma CL; Klein K; Kim R; Beery D; Ramakrishnan L
    Infect Immun; 2006 Jun; 74(6):3125-33. PubMed ID: 16714540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Murine Mycobacterium marinum Infection as a Model for Tuberculosis.
    Lienard J; Carlsson F
    Methods Mol Biol; 2017; 1535():301-315. PubMed ID: 27914088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of three Nod-like receptors and their role in antimicrobial responses of goldfish (Carassius auratus L.) macrophages to Aeromonas salmonicida and Mycobacterium marinum.
    Xie J; Hodgkinson JW; Katzenback BA; Kovacevic N; Belosevic M
    Dev Comp Immunol; 2013 Mar; 39(3):180-7. PubMed ID: 23194927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Looking within the zebrafish to understand the tuberculous granuloma.
    Ramakrishnan L
    Adv Exp Med Biol; 2013; 783():251-66. PubMed ID: 23468113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nontuberculous Mycobacteria, Macrophages, and Host Innate Immune Response.
    Shamaei M; Mirsaeidi M
    Infect Immun; 2021 Jul; 89(8):e0081220. PubMed ID: 34097459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of murine macrophages by Neisseria meningitidis and IFN-gamma in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype.
    Mukhopadhyay S; Peiser L; Gordon S
    J Leukoc Biol; 2004 Sep; 76(3):577-84. PubMed ID: 15218052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interception of host angiogenic signalling limits mycobacterial growth.
    Oehlers SH; Cronan MR; Scott NR; Thomas MI; Okuda KS; Walton EM; Beerman RW; Crosier PS; Tobin DM
    Nature; 2015 Jan; 517(7536):612-5. PubMed ID: 25470057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Mycobacterium marinum macrophage infection mutants.
    Mehta PK; Pandey AK; Subbian S; El-Etr SH; Cirillo SL; Samrakandi MM; Cirillo JD
    Microb Pathog; 2006 Apr; 40(4):139-51. PubMed ID: 16451826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.