These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25086382)

  • 1. Measurement of microbial adhesive forces with a parallel plate flow chamber.
    Yoshihara A; Narahara H; Kuriyama Y; Toyoda S; Tokumoto H; Konishi Y; Nomura T
    J Colloid Interface Sci; 2014 Oct; 432():77-85. PubMed ID: 25086382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO).
    Montes Ruiz-Cabello FJ; Maroni P; Borkovec M
    J Chem Phys; 2013 Jun; 138(23):234705. PubMed ID: 23802974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces.
    Boks NP; Norde W; van der Mei HC; Busscher HJ
    Microbiology (Reading); 2008 Oct; 154(Pt 10):3122-3133. PubMed ID: 18832318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces.
    Shen C; Wang F; Li B; Jin Y; Wang LP; Huang Y
    Langmuir; 2012 Oct; 28(41):14681-92. PubMed ID: 23006065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions.
    Katsikogianni MG; Missirlis YF
    Acta Biomater; 2010 Mar; 6(3):1107-18. PubMed ID: 19671455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2009 Jun; 25(12):6968-76. PubMed ID: 19334745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study on the adhesion and reentrainment of nondeformable particles on surfaces: the role of surface roughness and electrostatic forces.
    Henry C; Minier JP; Lefèvre G
    Langmuir; 2012 Jan; 28(1):438-52. PubMed ID: 22107171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of intermolecular forces in a circulating system.
    Guo Q; Liu M; Yang J
    Biosystems; 2011 Nov; 106(2-3):130-5. PubMed ID: 21843592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy.
    Vigeant MA; Ford RM; Wagner M; Tamm LK
    Appl Environ Microbiol; 2002 Jun; 68(6):2794-801. PubMed ID: 12039734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.
    Borkovec M; Szilagyi I; Popa I; Finessi M; Sinha P; Maroni P; Papastavrou G
    Adv Colloid Interface Sci; 2012 Nov; 179-182():85-98. PubMed ID: 22795487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial forces between silica surfaces measured by atomic force microscopy.
    Duan J
    J Environ Sci (China); 2009; 21(1):30-4. PubMed ID: 19402396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.
    Zhao W; Walker SL; Huang Q; Cai P
    Water Res; 2014 Apr; 53():35-46. PubMed ID: 24495985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Aggregation of Candida albicans on Glass in the Absence and Presence of Adhering Streptococcus gordonii in a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid-Base Interactions.
    Millsap KW; Bos R; Busscher HJ; van der Mei HC
    J Colloid Interface Sci; 1999 Apr; 212(2):495-502. PubMed ID: 10092381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The initial single yeast cell adhesion on glass via optical trapping and Derjaguin-Landau-Verwey-Overbeek predictions.
    Castelain M; Pignon F; Piau JM; Magnin A
    J Chem Phys; 2008 Apr; 128(13):135101. PubMed ID: 18397108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of electrokinetic theory for "soft" particles to bacterial cells: implications for bacterial adhesion.
    de Kerchove AJ; Elimelech M
    Langmuir; 2005 Jul; 21(14):6462-72. PubMed ID: 15982054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimentally derived sticking efficiencies of microparticles using atomic force microscopy.
    Cail TL; Hochella MF
    Environ Sci Technol; 2005 Feb; 39(4):1011-7. PubMed ID: 15773472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties.
    Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria.
    Chen G; Walker SL
    Langmuir; 2007 Jun; 23(13):7162-9. PubMed ID: 17523680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions.
    Thwala JM; Li M; Wong MC; Kang S; Hoek EM; Mamba BB
    Langmuir; 2013 Nov; 29(45):13773-82. PubMed ID: 24060232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.