These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25086507)

  • 21. Structures of Large RNAs and RNA-Protein Complexes: Toward Structure Determination of Riboswitches.
    Grigg JC; Ke A
    Methods Enzymol; 2015; 558():213-232. PubMed ID: 26068743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Structure and function of c-di-GMP riboswitches].
    Li X; Chen F; Xiao J; He J
    Sheng Wu Gong Cheng Xue Bao; 2017 Sep; 33(9):1357-1368. PubMed ID: 28956387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.
    Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH
    RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleobase mutants of a bacterial preQ
    Dutta D; Wedekind JE
    J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis for guanidine sensing by the
    Battaglia RA; Price IR; Ke A
    RNA; 2017 Apr; 23(4):578-585. PubMed ID: 28096518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-acting riboswitch control of translation initiation and mRNA decay.
    Caron MP; Bastet L; Lussier A; Simoneau-Roy M; Massé E; Lafontaine DA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3444-53. PubMed ID: 23169642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and evaluation of c-di-4'-thioAMP as an artificial ligand for c-di-AMP riboswitch.
    Shiraishi K; Saito-Tarashima N; Igata Y; Murakami K; Okamoto Y; Miyake Y; Furukawa K; Minakawa N
    Bioorg Med Chem; 2017 Jul; 25(14):3883-3889. PubMed ID: 28559057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding.
    Wood S; Ferré-D'Amaré AR; Rueda D
    ACS Chem Biol; 2012 May; 7(5):920-7. PubMed ID: 22380737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. C-di-AMP Is a Second Messenger in
    Reich SJ; Goldbeck O; Lkhaasuren T; Weixler D; Weiß T; Eikmanns BJ
    Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of the c-di-GMP riboswitch with its second messenger ligand.
    Smith KD; Strobel SA
    Biochem Soc Trans; 2011 Apr; 39(2):647-51. PubMed ID: 21428955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of c-di-GMP-Responsive Riboswitches.
    Peltier J; Soutourina O
    Methods Mol Biol; 2017; 1657():377-402. PubMed ID: 28889309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural insights into amino acid binding and gene control by a lysine riboswitch.
    Serganov A; Huang L; Patel DJ
    Nature; 2008 Oct; 455(7217):1263-7. PubMed ID: 18784651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch.
    Ren A; Rajashankar KR; Patel DJ
    Nature; 2012 May; 486(7401):85-9. PubMed ID: 22678284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A c-di-AMP riboswitch controlling
    Wang X; Cai X; Ma H; Yin W; Zhu L; Li X; Lim HM; Chou SH; He J
    Commun Biol; 2019; 2():151. PubMed ID: 31044176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches.
    Keller H; Weickhmann AK; Bock T; Wöhnert J
    RNA; 2018 Oct; 24(10):1390-1402. PubMed ID: 30006500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis for the recognition of cyclic-di-AMP by PstA, a PII-like signal transduction protein.
    Choi PH; Sureka K; Woodward JJ; Tong L
    Microbiologyopen; 2015 Jun; 4(3):361-74. PubMed ID: 25693966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis.
    Watson PY; Fedor MJ
    Nat Chem Biol; 2012 Dec; 8(12):963-5. PubMed ID: 23086297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch.
    Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A
    J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.