BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25086590)

  • 21. Narciclasine modulates polar auxin transport in Arabidopsis roots.
    Na X; Hu Y; Yue K; Lu H; Jia P; Wang H; Wang X; Bi Y
    J Plant Physiol; 2011 Jul; 168(11):1149-56. PubMed ID: 21511360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sites and regulation of auxin biosynthesis in Arabidopsis roots.
    Ljung K; Hull AK; Celenza J; Yamada M; Estelle M; Normanly J; Sandberg G
    Plant Cell; 2005 Apr; 17(4):1090-104. PubMed ID: 15772288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis.
    Chen X; Zhang M; Wang M; Tan G; Zhang M; Hou YX; Wang B; Li Z
    BMC Plant Biol; 2018 Dec; 18(1):361. PubMed ID: 30563457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis thaliana GH3.9 influences primary root growth.
    Khan S; Stone JM
    Planta; 2007 Jun; 226(1):21-34. PubMed ID: 17216483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture.
    Malheiros RSP; Costa LC; Ávila RT; Pimenta TM; Teixeira LS; Brito FAL; Zsögön A; Araújo WL; Ribeiro DM
    Planta; 2019 Jul; 250(1):333-345. PubMed ID: 31030327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes.
    Effendi Y; Rietz S; Fischer U; Scherer GF
    Plant J; 2011 Jan; 65(2):282-94. PubMed ID: 21223392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.
    Karampelias M; Neyt P; De Groeve S; Aesaert S; Coussens G; Rolčík J; Bruno L; De Winne N; Van Minnebruggen A; Van Montagu M; Ponce MR; Micol JL; Friml J; De Jaeger G; Van Lijsebettens M
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2768-73. PubMed ID: 26888284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.
    Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y
    PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers.
    Lewis DR; Negi S; Sukumar P; Muday GK
    Development; 2011 Aug; 138(16):3485-95. PubMed ID: 21771812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium.
    Talboys PJ; Owen DW; Healey JR; Withers PJ; Jones DL
    BMC Plant Biol; 2014 Feb; 14():51. PubMed ID: 24558978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rice Inositol Polyphosphate Kinase (OsIPK2) Directly Interacts with OsIAA11 to Regulate Lateral Root Formation.
    Chen Y; Yang Q; Sang S; Wei Z; Wang P
    Plant Cell Physiol; 2017 Nov; 58(11):1891-1900. PubMed ID: 29016933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation.
    Ivanchenko MG; Zhu J; Wang B; Medvecká E; Du Y; Azzarello E; Mancuso S; Megraw M; Filichkin S; Dubrovsky JG; Friml J; Geisler M
    Development; 2015 Feb; 142(4):712-21. PubMed ID: 25617431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of
    Sun H; Guo X; Xu F; Wu D; Zhang X; Lou M; Luo F; Xu G; Zhang Y
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis.
    Nacry P; Canivenc G; Muller B; Azmi A; Van Onckelen H; Rossignol M; Doumas P
    Plant Physiol; 2005 Aug; 138(4):2061-74. PubMed ID: 16040660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The wheat SHORT ROOT LENGTH 1 gene TaSRL1 controls root length in an auxin-dependent pathway.
    Zhuang M; Li C; Wang J; Mao X; Li L; Yin J; Du Y; Wang X; Jing R
    J Exp Bot; 2021 Oct; 72(20):6977-6989. PubMed ID: 34328188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression analysis of
    Li Z; Li P; Zhang J
    Plant Signal Behav; 2019; 14(9):1632689. PubMed ID: 31208285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots.
    Kandhol N; Rai P; Mishra V; Pandey S; Kumar S; Deshmukh R; Sharma S; Singh VP; Tripathi DK
    Planta; 2024 May; 259(6):144. PubMed ID: 38709333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex.
    Swarup R; Friml J; Marchant A; Ljung K; Sandberg G; Palme K; Bennett M
    Genes Dev; 2001 Oct; 15(20):2648-53. PubMed ID: 11641271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice.
    Jia H; Zhang S; Wang L; Yang Y; Zhang H; Cui H; Shao H; Xu G
    J Exp Bot; 2017 Nov; 68(18):5057-5068. PubMed ID: 29036625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytokinin and indole-3-acetic acid crosstalk is indispensable for silicon mediated chromium stress tolerance in roots of wheat seedlings.
    Kandhol N; Srivastava A; Rai P; Sharma S; Pandey S; Singh VP; Tripathi DK
    J Hazard Mater; 2024 Apr; 468():133134. PubMed ID: 38387171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.