BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25086641)

  • 1. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.
    Thomson D; Boylan C; Liptrot T; Aitkenhead A; Lee L; Yap B; Sykes A; Rowbottom C; Slevin N
    Radiat Oncol; 2014 Aug; 9():173. PubMed ID: 25086641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.
    Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S
    Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours.
    Fritscher KD; Peroni M; Zaffino P; Spadea MF; Schubert R; Sharp G
    Med Phys; 2014 May; 41(5):051910. PubMed ID: 24784389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of software-assisted contour propagation from planning CT to cone beam CT in head and neck radiotherapy.
    Hvid CA; Elstrøm UV; Jensen K; Alber M; Grau C
    Acta Oncol; 2016 Nov; 55(11):1324-1330. PubMed ID: 27556786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.
    Kieselmann JP; Kamerling CP; Burgos N; Menten MJ; Fuller CD; Nill S; Cardoso MJ; Oelfke U
    Phys Med Biol; 2018 Jul; 63(14):145007. PubMed ID: 29882749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer.
    Stapleford LJ; Lawson JD; Perkins C; Edelman S; Davis L; McDonald MW; Waller A; Schreibmann E; Fox T
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(3):959-66. PubMed ID: 20231069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA
    Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis.
    Fung NTC; Hung WM; Sze CK; Lee MCH; Ng WT
    Med Dosim; 2020 Spring; 45(1):60-65. PubMed ID: 31345672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic delineation for replanning in nasopharynx radiotherapy: what is the agreement among experts to be considered as benchmark?
    Mattiucci GC; Boldrini L; Chiloiro G; D'Agostino GR; Chiesa S; De Rose F; Azario L; Pasini D; Gambacorta MA; Balducci M; Valentini V
    Acta Oncol; 2013 Oct; 52(7):1417-22. PubMed ID: 23957565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is accurate contouring of salivary and swallowing structures necessary to spare them in head and neck VMAT plans?
    Delaney AR; Dahele M; Slotman BJ; Verbakel WFAR
    Radiother Oncol; 2018 May; 127(2):190-196. PubMed ID: 29605479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers.
    Oktay O; Nanavati J; Schwaighofer A; Carter D; Bristow M; Tanno R; Jena R; Barnett G; Noble D; Rimmer Y; Glocker B; O'Hara K; Bishop C; Alvarez-Valle J; Nori A
    JAMA Netw Open; 2020 Nov; 3(11):e2027426. PubMed ID: 33252691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal virtual monoenergetic image in "TwinBeam" dual-energy CT for organs-at-risk delineation based on contrast-noise-ratio in head-and-neck radiotherapy.
    Wang T; Ghavidel BB; Beitler JJ; Tang X; Lei Y; Curran WJ; Liu T; Yang X
    J Appl Clin Med Phys; 2019 Feb; 20(2):121-128. PubMed ID: 30693665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images.
    Podobnik G; Ibragimov B; Peterlin P; Strojan P; Vrtovec T
    Med Phys; 2024 Mar; 51(3):2175-2186. PubMed ID: 38230752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.