These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25086871)

  • 21. Characterization of tetramethylrhodaminyl-phalloidin binding to cellular F-actin.
    Cano ML; Cassimeris L; Joyce M; Zigmond SH
    Cell Motil Cytoskeleton; 1992; 21(2):147-58. PubMed ID: 1559266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.
    Ohto T; Hunger J; Backus EH; Mizukami W; Bonn M; Nagata Y
    Phys Chem Chem Phys; 2017 Mar; 19(10):6909-6920. PubMed ID: 28149990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How does trimethylamine N-oxide counteract the denaturing activity of urea?
    Graziano G
    Phys Chem Chem Phys; 2011 Oct; 13(39):17689-95. PubMed ID: 21894338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.
    Mondal J; Halverson D; Li IT; Stirnemann G; Walker GC; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9270-5. PubMed ID: 26170324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TMAO and urea in the hydration shell of the protein SNase.
    Smolin N; Voloshin VP; Anikeenko AV; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2017 Mar; 19(9):6345-6357. PubMed ID: 28116386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of TMAO and urea in the hydration shell of the protein SNase.
    Voloshin V; Smolin N; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2019 Sep; 21(35):19469-19479. PubMed ID: 31461098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noncovalent Interactions between Trimethylamine N-Oxide (TMAO), Urea, and Water.
    Zetterholm SG; Verville GA; Boutwell L; Boland C; Prather JC; Bethea J; Cauley J; Warren KE; Smith SA; Magers DH; Hammer NI
    J Phys Chem B; 2018 Sep; 122(38):8805-8811. PubMed ID: 30165021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of small hydrophobic solute in presence of the osmolytes urea and trimethylamine-N-oxide.
    Sarma R; Paul S
    J Phys Chem B; 2012 Mar; 116(9):2831-41. PubMed ID: 22300285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model Dependency of TMAO's Counteracting Effect Against Action of Urea: Kast Model versus Osmotic Model of TMAO.
    Borgohain G; Paul S
    J Phys Chem B; 2016 Mar; 120(9):2352-61. PubMed ID: 26876571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscopic significance of hydrophobic residues in the protein-stabilizing effect of trimethylamine N-oxide (TMAO).
    Yang Y; Mu Y; Li W
    Phys Chem Chem Phys; 2016 Aug; 18(32):22081-8. PubMed ID: 27147501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of the Polymerization Kinetics of α/β-Tubulin by Osmolytes and Macromolecular Crowding.
    Schummel PH; Gao M; Winter R
    Chemphyschem; 2017 Jan; 18(2):189-197. PubMed ID: 27813294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of the interaction between TMAO and urea in water using NMR spectroscopy.
    Nasralla M; Laurent H; Baker DL; Ries ME; Dougan L
    Phys Chem Chem Phys; 2022 Sep; 24(35):21216-21222. PubMed ID: 36040138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamical Effects of Trimethylamine N-Oxide on Aqueous Solutions of Urea.
    Teng X; Ichiye T
    J Phys Chem B; 2019 Feb; 123(5):1108-1115. PubMed ID: 30638025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of urea and trimethylamine-N-oxide on enzyme activity and stability.
    Mashino T; Fridovich I
    Arch Biochem Biophys; 1987 Nov; 258(2):356-60. PubMed ID: 3674879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Difference in polymerization and steady-state dynamics of free and gelsolin-capped filaments formed by alpha- and beta-isoactins.
    Khaitlina S; Hinssen H
    Arch Biochem Biophys; 2008 Sep; 477(2):279-84. PubMed ID: 18619940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution.
    Bennion BJ; Daggett V
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6433-8. PubMed ID: 15096583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein.
    Lin TY; Timasheff SN
    Biochemistry; 1994 Oct; 33(42):12695-701. PubMed ID: 7918496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Counteraction of urea by trimethylamine N-oxide is due to direct interaction.
    Meersman F; Bowron D; Soper AK; Koch MH
    Biophys J; 2009 Nov; 97(9):2559-66. PubMed ID: 19883599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trimethylamine-N-oxide depletes urea in a peptide solvation shell.
    Nasralla M; Laurent H; Alderman OLG; Headen TF; Dougan L
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2317825121. PubMed ID: 38536756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.