These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25086871)

  • 41. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme.
    Panuszko A; Bruździak P; Zielkiewicz J; Wyrzykowski D; Stangret J
    J Phys Chem B; 2009 Nov; 113(44):14797-809. PubMed ID: 19813739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time-dependent effects of trimethylamine-N-oxide/urea on lactate dehydrogenase activity: an unexplored dimension of the adaptation paradigm.
    Baskakov I; Bolen DW
    Biophys J; 1998 May; 74(5):2658-65. PubMed ID: 9591689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Natural osmolyte trimethylamine N-oxide stimulates tubulin polymerization and reverses urea inhibition.
    Sackett DL
    Am J Physiol; 1997 Aug; 273(2 Pt 2):R669-76. PubMed ID: 9277553
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea.
    Zou Q; Bennion BJ; Daggett V; Murphy KP
    J Am Chem Soc; 2002 Feb; 124(7):1192-202. PubMed ID: 11841287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of Urea and TMAO on Lipid Self-Assembly under Osmotic Stress Conditions.
    Pham QD; Wolde-Kidan A; Gupta A; Schlaich A; Schneck E; Netz RR; Sparr E
    J Phys Chem B; 2018 Jun; 122(25):6471-6482. PubMed ID: 29693387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of cosolvents on the hydration of carbon nanotubes.
    Yang L; Gao YQ
    J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Volume exclusion and H-bonding dominate the thermodynamics and solvation of trimethylamine-N-oxide in aqueous urea.
    Rösgen J; Jackson-Atogi R
    J Am Chem Soc; 2012 Feb; 134(7):3590-7. PubMed ID: 22280147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.
    Pivovarova AV; Khaitlina SY; Levitsky DI
    FEBS J; 2010 Sep; 277(18):3812-22. PubMed ID: 20718862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation and destabilization of actin filaments with tetramethylrhodamine-modified actin.
    Kudryashov DS; Phillips M; Reisler E
    Biophys J; 2004 Aug; 87(2):1136-45. PubMed ID: 15298916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of urea, tetramethyl urea, and trimethylamine N-oxide on aqueous solution structure and solvation of protein backbones: a molecular dynamics simulation study.
    Wei H; Fan Y; Gao YQ
    J Phys Chem B; 2010 Jan; 114(1):557-68. PubMed ID: 19928871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined effects of temperature, pressure, and co-solvents on the polymerization kinetics of actin.
    Rosin C; Estel K; Hälker J; Winter R
    Chemphyschem; 2015 May; 16(7):1379-85. PubMed ID: 25704394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Actin filament annealing in the presence of ATP and phalloidin.
    Kinosian HJ; Selden LA; Estes JE; Gershman LC
    Biochemistry; 1993 Nov; 32(46):12353-7. PubMed ID: 8241122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The effect of phalloidin on stability of F- and G-actin].
    Vedenkina NS; Kalinichenko LP; Permiakov EA
    Mol Biol (Mosk); 1995; 29(3):597-602. PubMed ID: 8552063
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions.
    Shakhman Y; Shumilin I; Harries D
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):165-172. PubMed ID: 36063634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Annealing accounts for the length of actin filaments formed by spontaneous polymerization.
    Sept D; Xu J; Pollard TD; McCammon JA
    Biophys J; 1999 Dec; 77(6):2911-9. PubMed ID: 10585915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of urea and guanidine hydrochloride on the sliding movement of actin filaments with ATP hydrolysis by myosin molecules.
    Kumemoto R; Hosogoe Y; Nomura N; Hatori K
    J Biochem; 2011 Jun; 149(6):713-20. PubMed ID: 21324985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of phalloidin and jasplakinolide on the flexibility and thermal stability of actin filaments.
    Visegrády B; Lorinczy D; Hild G; Somogyi B; Nyitrai M
    FEBS Lett; 2004 May; 565(1-3):163-6. PubMed ID: 15135072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TMAO-Protein Preferential Interaction Profile Determines TMAO's Conditional In Vivo Compatibility.
    Hong J; Xiong S
    Biophys J; 2016 Nov; 111(9):1866-1875. PubMed ID: 27806268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Actins from plant and animal sources tend not to form heteropolymers in vitro and function differently in plant cells.
    Jing Y; Yi K; Ren H
    Protoplasma; 2003; 222(3-4):183-91. PubMed ID: 14714207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.