These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25086982)

  • 1. Sub-lethal heat stress causes apoptosis in an Antarctic fish that lacks an inducible heat shock response.
    Sleadd IM; Lee M; Hassumani DO; Stecyk TM; Zeitz OK; Buckley BA
    J Therm Biol; 2014 Aug; 44():119-25. PubMed ID: 25086982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii.
    Buckley BA; Place SP; Hofmann GE
    J Exp Biol; 2004 Oct; 207(Pt 21):3649-56. PubMed ID: 15371473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman.
    Kiss AJ; Mirarefi AY; Ramakrishnan S; Zukoski CF; Devries AL; Cheng CH
    J Exp Biol; 2004 Dec; 207(Pt 26):4633-49. PubMed ID: 15579559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus.
    Fangue NA; Hofmeister M; Schulte PM
    J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-seq reveals a diminished acclimation response to the combined effects of ocean acidification and elevated seawater temperature in Pagothenia borchgrevinki.
    Huth TJ; Place SP
    Mar Genomics; 2016 Aug; 28():87-97. PubMed ID: 26969095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT; Devries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes.
    Bogan SN; Place SP
    BMC Evol Biol; 2019 Nov; 19(1):205. PubMed ID: 31694524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.
    Todgham AE; Crombie TA; Hofmann GE
    J Exp Biol; 2017 Feb; 220(Pt 3):369-378. PubMed ID: 27872216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How will fish that evolved at constant sub-zero temperatures cope with global warming? Notothenioids as a case study.
    Patarnello T; Verde C; di Prisco G; Bargelloni L; Zane L
    Bioessays; 2011 Apr; 33(4):260-8. PubMed ID: 21290397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment.
    Shin SC; Ahn DH; Kim SJ; Pyo CW; Lee H; Kim MK; Lee J; Lee JE; Detrich HW; Postlethwait JH; Edwards D; Lee SG; Lee JH; Park H
    Genome Biol; 2014 Sep; 15(9):468. PubMed ID: 25252967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological analysis of erythrocytes of an Antarctic teleost under heat stress: Bias of the stabling effect.
    Rizzotti D; Manfrin C; Gerdol M; Greco S; Santovito G; Giulianini PG
    J Therm Biol; 2022 Jan; 103():103139. PubMed ID: 35027197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae).
    Hofmann GE; Buckley BA; Airaksinen S; Keen JE; Somero GN
    J Exp Biol; 2000 Aug; 203(Pt 15):2331-9. PubMed ID: 10887071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morpho-functional effects of heat stress on the gills of Antarctic T. bernacchii and C. hamatus.
    Garofalo F; Santovito G; Amelio D
    Mar Pollut Bull; 2019 Apr; 141():194-204. PubMed ID: 30955726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches.
    Healy TM; Tymchuk WE; Osborne EJ; Schulte PM
    Physiol Genomics; 2010 Apr; 41(2):171-84. PubMed ID: 20103695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Could thermal sensitivity of mitochondria determine species distribution in a changing climate?
    Iftikar FI; MacDonald JR; Baker DW; Renshaw GM; Hickey AJ
    J Exp Biol; 2014 Jul; 217(Pt 13):2348-57. PubMed ID: 25141346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes.
    Mueller IA; Devor DP; Grim JM; Beers JM; Crockett EL; O'Brien KM
    J Exp Biol; 2012 Oct; 215(Pt 20):3655-64. PubMed ID: 22811244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.