These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25087048)

  • 1. Pichia stipitis OYE 2.6 variants with improved catalytic efficiencies from site-saturation mutagenesis libraries.
    Patterson-Orazem A; Sullivan B; Stewart JD
    Bioorg Med Chem; 2014 Oct; 22(20):5628-32. PubMed ID: 25087048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Library construction and evaluation for site saturation mutagenesis.
    Sullivan B; Walton AZ; Stewart JD
    Enzyme Microb Technol; 2013 Jun; 53(1):70-7. PubMed ID: 23683706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues Controlling Facial Selectivity in an Alkene Reductase and Semirational Alterations to Create Stereocomplementary Variants.
    Walton AZ; Sullivan B; Patterson-Orazem AC; Stewart JD
    ACS Catal; 2014 Jul; 4(7):2307-2318. PubMed ID: 25068071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants.
    Padhi SK; Bougioukou DJ; Stewart JD
    J Am Chem Soc; 2009 Mar; 131(9):3271-80. PubMed ID: 19226127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes.
    Romano D; Contente ML; Molinari F; Eberini I; Ruvutuso E; Sensi C; Amaretti A; Rossi M; Raimondi S
    Microb Cell Fact; 2014 Apr; 13():60. PubMed ID: 24767246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards preparative-scale, biocatalytic alkene reductions.
    Bougioukou DJ; Walton AZ; Stewart JD
    Chem Commun (Camb); 2010 Dec; 46(45):8558-60. PubMed ID: 20922215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries.
    Hulley ME; Toogood HS; Fryszkowska A; Mansell D; Stephens GM; Gardiner JM; Scrutton NS
    Chembiochem; 2010 Nov; 11(17):2433-47. PubMed ID: 21064170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.
    Zeng QK; Du HL; Wang JF; Wei DQ; Wang XN; Li YX; Lin Y
    Biotechnol Lett; 2009 Jul; 31(7):1025-9. PubMed ID: 19330484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure determination and mutagenesis analysis of the ene reductase NCR.
    Reich S; Hoeffken HW; Rosche B; Nestl BM; Hauer B
    Chembiochem; 2012 Nov; 13(16):2400-7. PubMed ID: 23033175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive biotransformation of nitroalkenes via nitroso-intermediates to oxazetes catalyzed by xenobiotic reductase A (XenA).
    Durchschein K; Fabian WM; Macheroux P; Zangger K; Trimmel G; Faber K
    Org Biomol Chem; 2011 May; 9(9):3364-9. PubMed ID: 21409264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of dye-mediated dehydrogenase property of fructosyl amino acid oxidases by site-directed mutagenesis studies of its putative proton relay system.
    Kim S; Nibe E; Ferri S; Tsugawa W; Sode K
    Biotechnol Lett; 2010 Aug; 32(8):1123-9. PubMed ID: 20383736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of different substrate preferences of two old yellow enzymes from yeasts in the asymmetric reduction of enone compounds.
    Horita S; Kataoka M; Kitamura N; Miyakawa T; Ohtsuka J; Maejima Y; Shimomura K; Nagata K; Shimizu S; Tanokura M
    Biosci Biotechnol Biochem; 2019 Mar; 83(3):456-462. PubMed ID: 30445889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study.
    Spiegelhauer O; Mende S; Dickert F; Knauer SH; Ullmann GM; Dobbek H
    J Mol Biol; 2010 Apr; 398(1):66-82. PubMed ID: 20206186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.
    Khattab SM; Watanabe S; Saimura M; Kodaki T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*.
    Joseph Srinivasan S; Cleary SE; Ramirez MA; Reeve HA; Paul CE; Vincent KA
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13824-13828. PubMed ID: 33721401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin-dependent halogenases catalyze enantioselective olefin halocyclization.
    Mondal D; Fisher BF; Jiang Y; Lewis JC
    Nat Commun; 2021 Jun; 12(1):3268. PubMed ID: 34075034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase.
    Müller A; Hauer B; Rosche B
    Biotechnol Bioeng; 2007 Sep; 98(1):22-9. PubMed ID: 17657768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity.
    Toogood HS; Fryszkowska A; Hulley M; Sakuma M; Mansell D; Stephens GM; Gardiner JM; Scrutton NS
    Chembiochem; 2011 Mar; 12(5):738-49. PubMed ID: 21374779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostabilization of Pichia stipitis xylitol dehydrogenase by mutation of structural zinc-binding loop.
    Annaluru N; Watanabe S; Pack SP; Saleh AA; Kodaki T; Makino K
    J Biotechnol; 2007 May; 129(4):717-22. PubMed ID: 17350704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of protein engineering to members of the old yellow enzyme family.
    Amato ED; Stewart JD
    Biotechnol Adv; 2015; 33(5):624-31. PubMed ID: 25940546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.