These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 25087479)

  • 1. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.
    Krylov AA; Kolontaevsky EE; Mashko SV
    J Microbiol Methods; 2014 Oct; 105():109-15. PubMed ID: 25087479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum.
    Kim IK; Jeong WK; Lim SH; Hwang IK; Kim YH
    J Microbiol Methods; 2011 Jan; 84(1):128-30. PubMed ID: 20951172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker.
    Ma W; Wang X; Mao Y; Wang Z; Chen T; Zhao X
    Biotechnol Lett; 2015 Mar; 37(3):609-17. PubMed ID: 25376333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages.
    Datta S; Costantino N; Zhou X; Court DL
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1626-31. PubMed ID: 18230724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets.
    van Kessel JC; Hatfull GF
    Mol Microbiol; 2008 Mar; 67(5):1094-107. PubMed ID: 18221264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica.
    Gerlach RG; Jäckel D; Hölzer SU; Hensel M
    Appl Environ Microbiol; 2009 Mar; 75(6):1575-80. PubMed ID: 19151186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An update of the suicide plasmid-mediated genome editing system in Corynebacterium glutamicum.
    Wang T; Li Y; Li J; Zhang D; Cai N; Zhao G; Ma H; Shang C; Ma Q; Xu Q; Chen N
    Microb Biotechnol; 2019 Sep; 12(5):907-919. PubMed ID: 31180185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xer-cise in Helicobacter pylori: one-step transformation for the construction of markerless gene deletions.
    Debowski AW; Gauntlett JC; Li H; Liao T; Sehnal M; Nilsson HO; Marshall BJ; Benghezal M
    Helicobacter; 2012 Dec; 17(6):435-43. PubMed ID: 23066820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector.
    Tsuchida Y; Kimura S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1107-15. PubMed ID: 18936936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phage recombinases and their applications.
    Murphy KC
    Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette.
    Huang Y; Li L; Xie S; Zhao N; Han S; Lin Y; Zheng S
    Sci Rep; 2017 Aug; 7(1):7916. PubMed ID: 28801604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecies electro-transformation in Corynebacteria.
    Bonamy C; Guyonvarch A; Reyes O; David F; Leblon G
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):263-9. PubMed ID: 2108897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mistranslation induced by streptomycin provokes a RecABC/RuvABC-dependent mutator phenotype in Escherichia coli cells.
    Balashov S; Humayun MZ
    J Mol Biol; 2002 Jan; 315(4):513-27. PubMed ID: 11812126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency counterselection recombineering for site-directed mutagenesis in bacterial artificial chromosomes.
    Bird AW; Erler A; Fu J; Hériché JK; Maresca M; Zhang Y; Hyman AA; Stewart AF
    Nat Methods; 2011 Dec; 9(1):103-9. PubMed ID: 22138824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate.
    Yu D; Sawitzke JA; Ellis H; Court DL
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7207-12. PubMed ID: 12771385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria.
    Swingle BM
    Methods Mol Biol; 2013; 978():127-32. PubMed ID: 23423893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-length single-stranded PCR product mediated chromosomal integration in intact Bacillus subtilis.
    Wen S; Yang J; Tan T
    J Microbiol Methods; 2013 Mar; 92(3):273-7. PubMed ID: 23201169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering.
    Sawitzke JA; Costantino N; Li XT; Thomason LC; Bubunenko M; Court C; Court DL
    J Mol Biol; 2011 Mar; 407(1):45-59. PubMed ID: 21256136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA oligonucleotide-assisted genetic manipulation increases transformation and homologous recombination efficiencies: Evidence from gene targeting of Dictyostelium discoideum.
    Kuwayama H; Yanagida T; Ueda M
    J Biotechnol; 2008 Feb; 133(4):418-23. PubMed ID: 18160166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.