These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2508762)

  • 1. The second respiratory chain of Candida parapsilosis: a comprehensive study.
    Guerin M; Camougrand N; Caubet R; Zniber S; Velours G; Manon S; Guelin E; Cheyrou A
    Biochimie; 1989 Aug; 71(8):887-902. PubMed ID: 2508762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The alternative respiratory pathway of the yeast Candida parapsilosis: oxidation of exogenous NAD(P)H.
    Camougrand NM; Cheyrou A; Henry MF; Guérin MG
    J Gen Microbiol; 1988 Dec; 134(12):3195-204. PubMed ID: 3269391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antimycin-A-insensitive respiratory pathway of Candida parapsilosis: evidence for a second quinone involved specifically in its functioning.
    Camougrand NM; Zniber S; Guérin MG
    Biochim Biophys Acta; 1991 Mar; 1057(1):124-30. PubMed ID: 2009273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning of electron flux between the respiratory chains of the yeast Candida parapsilosis: parallel working of the two chains.
    Guerin MG; Camougrand NM
    Biochim Biophys Acta; 1994 Feb; 1184(1):111-7. PubMed ID: 8305449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alternative oxidase of Candida parapsilosis.
    Guérin M; Camougrand N
    Eur J Biochem; 1986 Sep; 159(3):519-24. PubMed ID: 3758075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance of Candida parapsilosis to drugs.
    Camougrand N; Velours G; Guerin M
    Biol Cell; 1986; 58(1):71-8. PubMed ID: 2952201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidation of external NADH by an intermembrane electron transfer in mitochondria from the ubiquinone-deficient mutant E3-24 of Saccharomyces cerevisiae.
    De Santis A; Melandri BA
    Arch Biochem Biophys; 1984 Jul; 232(1):354-65. PubMed ID: 6378098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Respiratory chain of Candida mycoderma].
    Sokolov GV; Eremina SS; Lozinov AB
    Mikrobiologiia; 1977; 46(4):597-604. PubMed ID: 198640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide-adenine dinucleotide and the cytochromes in Torulopsis utilis.
    Haddock BA; Garland PB
    Biochem J; 1971 Aug; 124(1):155-70. PubMed ID: 4399517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an alternative and non-phosphorylating pathway for NADH reoxidation in a yeast strain resistant to glucose repression.
    Camougrand NM; Caubet RB; Guerin MG
    Eur J Biochem; 1983 Sep; 135(2):367-71. PubMed ID: 6309524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetic growth yields of the yeast Candida parapsilosis.
    Camougrand N; Velours G; Guerin M
    Biol Cell; 1987; 61(3):171-5. PubMed ID: 2965946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae.
    Djavadi FH; Moradi M; Djavadi-Ohaniance L
    Eur J Biochem; 1980 Jun; 107(2):501-4. PubMed ID: 6995121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myxothiazol, a new inhibitor of the cytochrome b-c1 segment of th respiratory chain.
    Thierbach G; Reichenbach H
    Biochim Biophys Acta; 1981 Dec; 638(2):282-9. PubMed ID: 6274398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.