BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 25087883)

  • 1. A coarse-grained molecular dynamics investigation of the phase behavior of DPPC/cholesterol mixtures.
    Zhang Y; Lervik A; Seddon J; Bresme F
    Chem Phys Lipids; 2015 Jan; 185():88-98. PubMed ID: 25087883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural organization of sterol molecules in DPPC bilayers: a coarse-grained molecular dynamics investigation.
    Zhang Y; Carter JW; Lervik A; Brooks NJ; Seddon JM; Bresme F
    Soft Matter; 2016 Feb; 12(7):2108-17. PubMed ID: 26758699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers.
    Jaschonek S; Cascella M; Gauss J; Diezemann G; Milano G
    Biochem Biophys Res Commun; 2018 Mar; 498(2):327-333. PubMed ID: 29101041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of phase coexistence in DPPC/cholesterol vesicles using Raman spectroscopy.
    de Lange MJ; Bonn M; Müller M
    Chem Phys Lipids; 2007 Apr; 146(2):76-84. PubMed ID: 17270165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion of cholesterol and its precursors in lipid membranes studied by 1H pulsed field gradient magic angle spinning NMR.
    Scheidt HA; Huster D; Gawrisch K
    Biophys J; 2005 Oct; 89(4):2504-12. PubMed ID: 16085761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic simulation of cholesterol effects on miscibility of saturated and unsaturated phospholipids: implications for liquid-ordered/liquid-disordered phase coexistence.
    de Joannis J; Coppock PS; Yin F; Mori M; Zamorano A; Kindt JT
    J Am Chem Soc; 2011 Mar; 133(10):3625-34. PubMed ID: 21341653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol-phospholipid association in fluid bilayers: a thermodynamic analysis from nearest-neighbor recognition measurements.
    Zhang J; Cao H; Jing B; Almeida PF; Regen SL
    Biophys J; 2006 Aug; 91(4):1402-6. PubMed ID: 16751233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
    Lindblom G; Orädd G; Filippov A
    Chem Phys Lipids; 2006 Jun; 141(1-2):179-84. PubMed ID: 16580657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.
    Kong X; Qin S; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 May; 16(18):8434-40. PubMed ID: 24668218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase structures of binary lipid bilayers as revealed by permeability of small molecules.
    Xiang TX; Anderson BD
    Biochim Biophys Acta; 1998 Mar; 1370(1):64-76. PubMed ID: 9518554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and stability of lipid bilayers modulated by thermosensitive polypeptides, cholesterols, and PEGylated lipids.
    Lee H; Kim HR; Park JC
    Phys Chem Chem Phys; 2014 Feb; 16(8):3763-70. PubMed ID: 24429702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC.
    Smith EA; Wang W; Dea PK
    Chem Phys Lipids; 2012 Feb; 165(2):151-9. PubMed ID: 22200532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key molecular requirements for raft formation in lipid/cholesterol membranes.
    Hakobyan D; Heuer A
    PLoS One; 2014; 9(2):e87369. PubMed ID: 24498317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat Capacity of DPPC/Cholesterol Mixtures: Comparison of Single Bilayers with Multibilayers and Simulations.
    Almeida PF; Carter FE; Kilgour KM; Raymonda MH; Tejada E
    Langmuir; 2018 Aug; 34(33):9798-9809. PubMed ID: 30088940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency ultrasound-induced transport across non-raft-forming ternary lipid bilayers.
    Small EF; Dan NR; Wrenn SP
    Langmuir; 2012 Oct; 28(40):14364-72. PubMed ID: 22974532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of pore formation in stretched phospholipid/cholesterol bilayers.
    Shigematsu T; Koshiyama K; Wada S
    Chem Phys Lipids; 2014 Oct; 183():43-9. PubMed ID: 24863643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictions of phase separation in three-component lipid membranes by the MARTINI force field.
    Davis RS; Sunil Kumar PB; Sperotto MM; Laradji M
    J Phys Chem B; 2013 Apr; 117(15):4072-80. PubMed ID: 23534606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.