These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 25088039)

  • 1. Deubiquitinating enzyme inhibitors and their potential in cancer therapy.
    Crosas B
    Curr Cancer Drug Targets; 2014; 14(6):506-16. PubMed ID: 25088039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system.
    Dou QP; Zonder JA
    Curr Cancer Drug Targets; 2014; 14(6):517-36. PubMed ID: 25092212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment.
    Park J; Cho J; Song EJ
    Arch Pharm Res; 2020 Nov; 43(11):1144-1161. PubMed ID: 33165832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the ubiquitin pathway for cancer treatment.
    Liu J; Shaik S; Dai X; Wu Q; Zhou X; Wang Z; Wei W
    Biochim Biophys Acta; 2015 Jan; 1855(1):50-60. PubMed ID: 25481052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in proteasome inhibitor-based cancer therapies.
    Dou QP
    Curr Cancer Drug Targets; 2014; 14(6):505. PubMed ID: 25092106
    [No Abstract]   [Full Text] [Related]  

  • 6. NEDD4: a promising target for cancer therapy.
    Ye X; Wang L; Shang B; Wang Z; Wei W
    Curr Cancer Drug Targets; 2014; 14(6):549-56. PubMed ID: 25088038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the ubiquitin-proteasome pathway in cancer development and treatment.
    Ding F; Xiao H; Wang M; Xie X; Hu F
    Front Biosci (Landmark Ed); 2014 Jun; 19(6):886-95. PubMed ID: 24896323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ubiquitin-proteasome pathway as a target for therapeutic strategies].
    Staszczak M
    Postepy Biochem; 2017; 63(4):287-303. PubMed ID: 29374430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitin and cancer: from molecular targets and mechanisms to the clinic -- AACR Special Conference.
    Colland F
    IDrugs; 2006 Mar; 9(3):179-81. PubMed ID: 16523381
    [No Abstract]   [Full Text] [Related]  

  • 10. Novel strategies to target the ubiquitin proteasome system in multiple myeloma.
    Lub S; Maes K; Menu E; De Bruyne E; Vanderkerken K; Van Valckenborgh E
    Oncotarget; 2016 Feb; 7(6):6521-37. PubMed ID: 26695547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deubiquitinases (DUBs) and DUB inhibitors: a patent review.
    Farshi P; Deshmukh RR; Nwankwo JO; Arkwright RT; Cvek B; Liu J; Dou QP
    Expert Opin Ther Pat; 2015; 25(10):1191-1208. PubMed ID: 26077642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular pathways: translational potential of deubiquitinases as drug targets.
    D'Arcy P; Linder S
    Clin Cancer Res; 2014 Aug; 20(15):3908-14. PubMed ID: 25085788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system.
    Poirson J; Biquand E; Straub ML; Cassonnet P; Nominé Y; Jones L; van der Werf S; Travé G; Zanier K; Jacob Y; Demeret C; Masson M
    FEBS J; 2017 Oct; 284(19):3171-3201. PubMed ID: 28786561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteasome substrate receptors and their therapeutic potential.
    Osei-Amponsa V; Walters KJ
    Trends Biochem Sci; 2022 Nov; 47(11):950-964. PubMed ID: 35817651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition.
    Patel K; Ahmed ZS; Huang X; Yang Q; Ekinci E; Neslund-Dudas CM; Mitra B; Elnady FA; Ahn YH; Yang H; Liu J; Dou QP
    Future Med Chem; 2018 Sep; 10(17):2087-2108. PubMed ID: 30066579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
    Mooneyham A; Bazzaro M
    Methods Mol Biol; 2017; 1513():49-59. PubMed ID: 27807830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer.
    Pal A; Young MA; Donato NJ
    Cancer Res; 2014 Sep; 74(18):4955-66. PubMed ID: 25172841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Epithelial-Mesenchymal Transition by E3 Ubiquitin Ligases and Deubiquitinase in Cancer.
    Inoue Y; Itoh Y; Sato K; Kawasaki F; Sumita C; Tanaka T; Morishita D; Hayashi H
    Curr Cancer Drug Targets; 2016; 16(2):110-8. PubMed ID: 26560121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitination and deubiquitination: Implications on cancer therapy.
    Dagar G; Kumar R; Yadav KK; Singh M; Pandita TK
    Biochim Biophys Acta Gene Regul Mech; 2023 Dec; 1866(4):194979. PubMed ID: 37633647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of proteolysis by human deubiquitinating enzymes.
    Eletr ZM; Wilkinson KD
    Biochim Biophys Acta; 2014 Jan; 1843(1):114-28. PubMed ID: 23845989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.