BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 25088039)

  • 1. Deubiquitinating enzyme inhibitors and their potential in cancer therapy.
    Crosas B
    Curr Cancer Drug Targets; 2014; 14(6):506-16. PubMed ID: 25088039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system.
    Dou QP; Zonder JA
    Curr Cancer Drug Targets; 2014; 14(6):517-36. PubMed ID: 25092212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment.
    Park J; Cho J; Song EJ
    Arch Pharm Res; 2020 Nov; 43(11):1144-1161. PubMed ID: 33165832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the ubiquitin pathway for cancer treatment.
    Liu J; Shaik S; Dai X; Wu Q; Zhou X; Wang Z; Wei W
    Biochim Biophys Acta; 2015 Jan; 1855(1):50-60. PubMed ID: 25481052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in proteasome inhibitor-based cancer therapies.
    Dou QP
    Curr Cancer Drug Targets; 2014; 14(6):505. PubMed ID: 25092106
    [No Abstract]   [Full Text] [Related]  

  • 6. NEDD4: a promising target for cancer therapy.
    Ye X; Wang L; Shang B; Wang Z; Wei W
    Curr Cancer Drug Targets; 2014; 14(6):549-56. PubMed ID: 25088038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the ubiquitin-proteasome pathway in cancer development and treatment.
    Ding F; Xiao H; Wang M; Xie X; Hu F
    Front Biosci (Landmark Ed); 2014 Jun; 19(6):886-95. PubMed ID: 24896323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ubiquitin-proteasome pathway as a target for therapeutic strategies].
    Staszczak M
    Postepy Biochem; 2017; 63(4):287-303. PubMed ID: 29374430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitin and cancer: from molecular targets and mechanisms to the clinic -- AACR Special Conference.
    Colland F
    IDrugs; 2006 Mar; 9(3):179-81. PubMed ID: 16523381
    [No Abstract]   [Full Text] [Related]  

  • 10. Novel strategies to target the ubiquitin proteasome system in multiple myeloma.
    Lub S; Maes K; Menu E; De Bruyne E; Vanderkerken K; Van Valckenborgh E
    Oncotarget; 2016 Feb; 7(6):6521-37. PubMed ID: 26695547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deubiquitinases (DUBs) and DUB inhibitors: a patent review.
    Farshi P; Deshmukh RR; Nwankwo JO; Arkwright RT; Cvek B; Liu J; Dou QP
    Expert Opin Ther Pat; 2015; 25(10):1191-1208. PubMed ID: 26077642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular pathways: translational potential of deubiquitinases as drug targets.
    D'Arcy P; Linder S
    Clin Cancer Res; 2014 Aug; 20(15):3908-14. PubMed ID: 25085788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system.
    Poirson J; Biquand E; Straub ML; Cassonnet P; Nominé Y; Jones L; van der Werf S; Travé G; Zanier K; Jacob Y; Demeret C; Masson M
    FEBS J; 2017 Oct; 284(19):3171-3201. PubMed ID: 28786561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteasome substrate receptors and their therapeutic potential.
    Osei-Amponsa V; Walters KJ
    Trends Biochem Sci; 2022 Nov; 47(11):950-964. PubMed ID: 35817651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition.
    Patel K; Ahmed ZS; Huang X; Yang Q; Ekinci E; Neslund-Dudas CM; Mitra B; Elnady FA; Ahn YH; Yang H; Liu J; Dou QP
    Future Med Chem; 2018 Sep; 10(17):2087-2108. PubMed ID: 30066579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
    Mooneyham A; Bazzaro M
    Methods Mol Biol; 2017; 1513():49-59. PubMed ID: 27807830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer.
    Pal A; Young MA; Donato NJ
    Cancer Res; 2014 Sep; 74(18):4955-66. PubMed ID: 25172841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Epithelial-Mesenchymal Transition by E3 Ubiquitin Ligases and Deubiquitinase in Cancer.
    Inoue Y; Itoh Y; Sato K; Kawasaki F; Sumita C; Tanaka T; Morishita D; Hayashi H
    Curr Cancer Drug Targets; 2016; 16(2):110-8. PubMed ID: 26560121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitination and deubiquitination: Implications on cancer therapy.
    Dagar G; Kumar R; Yadav KK; Singh M; Pandita TK
    Biochim Biophys Acta Gene Regul Mech; 2023 Dec; 1866(4):194979. PubMed ID: 37633647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of proteolysis by human deubiquitinating enzymes.
    Eletr ZM; Wilkinson KD
    Biochim Biophys Acta; 2014 Jan; 1843(1):114-28. PubMed ID: 23845989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.