These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25088101)

  • 1. Core-shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage.
    Xiao Y; Sun P; Cao M
    ACS Nano; 2014 Aug; 8(8):7846-57. PubMed ID: 25088101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage.
    Chen T; Cheng B; Chen R; Hu Y; Lv H; Zhu G; Wang Y; Ma L; Liang J; Tie Z; Jin Z; Liu J
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26834-26841. PubMed ID: 27627613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries.
    Li Y; Meng Q; Zhu SM; Sun ZH; Yang H; Chen ZX; Zhu CL; Guo ZP; Zhang D
    Dalton Trans; 2015 Mar; 44(10):4594-600. PubMed ID: 25655996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance lithium storage achieved by chemically binding germanium nanoparticles with N-doped carbon.
    Xiao Y; Cao M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12922-30. PubMed ID: 24972344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafine Mo2C nanoparticles encapsulated in N-doped carbon nanofibers with enhanced lithium storage performance.
    Li R; Wang S; Wang W; Cao M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24803-9. PubMed ID: 26344047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-drying-assisted synthesis of hierarchically porous carbon/germanium hybrid for high-efficiency lithium-ion batteries.
    Xiao Y; Cao M
    Chem Asian J; 2014 Oct; 9(10):2859-65. PubMed ID: 25070205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Core-Shell CuCo
    Zheng T; Li G; Meng X; Li S; Ren M
    Chemistry; 2019 Jan; 25(3):885-891. PubMed ID: 30412335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF-Derived Hierarchical MnO-Doped Fe
    He Z; Wang K; Zhu S; Huang LA; Chen M; Guo J; Pei S; Shao H; Wang J
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10974-10985. PubMed ID: 29537815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous TiO
    Zhu H; Jing Y; Pal M; Liu Y; Liu Y; Wang J; Zhang F; Zhao D
    Nanoscale; 2017 Jan; 9(4):1539-1546. PubMed ID: 28067925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Situ Crafting of ZnFe₂O₄ Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials.
    Jiang B; Han C; Li B; He Y; Lin Z
    ACS Nano; 2016 Feb; 10(2):2728-35. PubMed ID: 26786214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries.
    Bhattacharjya D; Park HY; Kim MS; Choi HS; Inamdar SN; Yu JS
    Langmuir; 2014 Jan; 30(1):318-24. PubMed ID: 24345084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries.
    Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL
    Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.
    Xue DJ; Xin S; Yan Y; Jiang KC; Yin YX; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Feb; 134(5):2512-5. PubMed ID: 22260540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance.
    Sun Z; Ai W; Liu J; Qi X; Wang Y; Zhu J; Zhang H; Yu T
    Nanoscale; 2014 Jun; 6(12):6563-8. PubMed ID: 24796419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical carbon dioxide assisted deposition of Fe(3)O(4) nanoparticles on hierarchical porous carbon and their lithium-storage performance.
    Wang L; Zhuo L; Zhang C; Zhao F
    Chemistry; 2014 Apr; 20(15):4308-15. PubMed ID: 24590487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-nanotube-encapsulated FeF₂ nanorods for high-performance lithium-ion cathode materials.
    Zhou J; Zhang D; Zhang X; Song H; Chen X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21223-9. PubMed ID: 25399691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tin dioxide@carbon core-shell nanoarchitectures anchored on wrinkled graphene for ultrafast and stable lithium storage.
    Zhou X; Liu W; Yu X; Liu Y; Fang Y; Klankowski S; Yang Y; Brown JE; Li J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7434-43. PubMed ID: 24784816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors.
    Liu C; Wang J; Li J; Zeng M; Luo R; Shen J; Sun X; Han W; Wang L
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7194-204. PubMed ID: 26942712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of Ge@C core-shell nanocomposites for high-performance lithium storage in lithium-ion batteries.
    Wang Y; Wang G
    Chem Asian J; 2013 Dec; 8(12):3142-6. PubMed ID: 24006143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.