These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Marginal zinc intake reduces the protective effect of lactation on mammary gland carcinogenesis in a DMBA-induced tumor model in mice. Bostanci Z; Mack RP; Enomoto LM; Alam S; Brown A; Neumann C; Soybel DI; Kelleher SL Oncol Rep; 2016 Mar; 35(3):1409-16. PubMed ID: 26707944 [TBL] [Abstract][Full Text] [Related]
4. Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation. Kelleher SL; Lönnerdal B J Nutr; 2002 Nov; 132(11):3280-5. PubMed ID: 12421840 [TBL] [Abstract][Full Text] [Related]
5. Zip3 (Slc39a3) functions in zinc reuptake from the alveolar lumen in lactating mammary gland. Kelleher SL; Lopez V; Lönnerdal B; Dufner-Beattie J; Andrews GK Am J Physiol Regul Integr Comp Physiol; 2009 Jul; 297(1):R194-201. PubMed ID: 19458277 [TBL] [Abstract][Full Text] [Related]
6. Essential Role for Zinc Transporter 2 (ZnT2)-mediated Zinc Transport in Mammary Gland Development and Function during Lactation. Lee S; Hennigar SR; Alam S; Nishida K; Kelleher SL J Biol Chem; 2015 May; 290(21):13064-78. PubMed ID: 25851903 [TBL] [Abstract][Full Text] [Related]
7. Segregated responses of mammary gland development and vaginal opening to prepubertal genistein exposure in Bscl2(-/-) female mice with lipodystrophy. Li R; El Zowalaty AE; Chen W; Dudley EA; Ye X Reprod Toxicol; 2015 Jul; 54():76-83. PubMed ID: 25462787 [TBL] [Abstract][Full Text] [Related]
8. Effect of Maternal Marginal Zinc Deficiency on Development, Redox Status, and Gene Expression Related to Oxidation and Apoptosis in an Avian Embryo Model. Gao W; Huang L; Zhang X; Ma X; Wang W; Zheng Y; Geng W; Liu C; Wei S; Yang L; Zhu Y Oxid Med Cell Longev; 2021; 2021():9013280. PubMed ID: 34712389 [TBL] [Abstract][Full Text] [Related]
9. ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. McCormick NH; Kelleher SL Am J Physiol Cell Physiol; 2012 Aug; 303(3):C291-7. PubMed ID: 22621784 [TBL] [Abstract][Full Text] [Related]
10. Zinc transporter 2 interacts with vacuolar ATPase and is required for polarization, vesicle acidification, and secretion in mammary epithelial cells. Lee S; Rivera OC; Kelleher SL J Biol Chem; 2017 Dec; 292(52):21598-21613. PubMed ID: 29114036 [TBL] [Abstract][Full Text] [Related]
11. Altered AIB1 or AIB1Δ3 expression impacts ERα effects on mammary gland stromal and epithelial content. Nakles RE; Shiffert MT; Díaz-Cruz ES; Cabrera MC; Alotaiby M; Miermont AM; Riegel AT; Furth PA Mol Endocrinol; 2011 Apr; 25(4):549-63. PubMed ID: 21292825 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of two single nucleotide polymorphisms in SLC30A2 (ZnT2): implications for mammary gland function and breast disease in women. Seo YA; Kelleher SL Physiol Genomics; 2010 Nov; 42A(4):219-27. PubMed ID: 20858712 [TBL] [Abstract][Full Text] [Related]
13. Obesity-Induced Inflammation Is Associated with Alterations in Subcellular Zinc Pools and Premature Mammary Gland Involution in Lactating Mice. Hennigar SR; Velasquez V; Kelleher SL J Nutr; 2015 Sep; 145(9):1999-2005. PubMed ID: 26203096 [TBL] [Abstract][Full Text] [Related]
14. P190-B Rho GTPase-activating protein overexpression disrupts ductal morphogenesis and induces hyperplastic lesions in the developing mammary gland. Vargo-Gogola T; Heckman BM; Gunther EJ; Chodosh LA; Rosen JM Mol Endocrinol; 2006 Jun; 20(6):1391-405. PubMed ID: 16469769 [TBL] [Abstract][Full Text] [Related]
15. Alterations in the mammary gland and tumor microenvironment of formerly obese mice. Kuziel G; Moore BN; Haugstad GP; Xiong Y; Williams AE; Arendt LM BMC Cancer; 2023 Dec; 23(1):1183. PubMed ID: 38041006 [TBL] [Abstract][Full Text] [Related]
16. Pubertal exposure to high fat diet causes mouse strain-dependent alterations in mammary gland development and estrogen responsiveness. Olson LK; Tan Y; Zhao Y; Aupperlee MD; Haslam SZ Int J Obes (Lond); 2010 Sep; 34(9):1415-26. PubMed ID: 20231845 [TBL] [Abstract][Full Text] [Related]
17. Marginal maternal Zn intake in rats alters mammary gland Cu transporter levels and milk Cu concentration and affects neonatal Cu metabolism. Kelleher SL; Lönnerdal B J Nutr; 2003 Jul; 133(7):2141-8. PubMed ID: 12840169 [TBL] [Abstract][Full Text] [Related]
18. ZnT4 (SLC30A4)-null ("lethal milk") mice have defects in mammary gland secretion and hallmarks of precocious involution during lactation. McCormick NH; Lee S; Hennigar SR; Kelleher SL Am J Physiol Regul Integr Comp Physiol; 2016 Jan; 310(1):R33-40. PubMed ID: 26538236 [TBL] [Abstract][Full Text] [Related]
19. Zn transporter levels and localization change throughout lactation in rat mammary gland and are regulated by Zn in mammary cells. Kelleher SL; Lönnerdal B J Nutr; 2003 Nov; 133(11):3378-85. PubMed ID: 14608047 [TBL] [Abstract][Full Text] [Related]
20. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats. Das Gupta S; So JY; Wall B; Wahler J; Smolarek AK; Sae-Tan S; Soewono KY; Yu H; Lee MJ; Thomas PE; Yang CS; Suh N Mol Carcinog; 2015 Sep; 54(9):916-25. PubMed ID: 24782330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]