BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25088586)

  • 1. Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints.
    Venturato C; Pavan PG; Forestiero A; Carniel EL; Natali AN
    Acta Bioeng Biomech; 2014; 16(2):57-65. PubMed ID: 25088586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the biomechanical behaviour of hindfoot ligaments.
    Forestiero A; Carniel EL; Venturato C; Natali AN
    Proc Inst Mech Eng H; 2013 Jun; 227(6):683-92. PubMed ID: 23636750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical model for healthy and injured ankle ligaments.
    Forestiero A; Carniel EL; Fontanella CG; Natali AN
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):289-295. PubMed ID: 28220401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of finite elements to the stress analysis of articular cartilage.
    Goldsmith AA; Hayes A; Clift SE
    Med Eng Phys; 1996 Mar; 18(2):89-98. PubMed ID: 8673324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive rheological models for the consolidation behaviour of articular cartilage under static loading.
    Nguyen T; Oloyede A
    Proc Inst Mech Eng H; 2001; 215(6):565-77. PubMed ID: 11848389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions.
    Wan L; de Asla RJ; Rubash HE; Li G
    Osteoarthritis Cartilage; 2006 Dec; 14(12):1294-301. PubMed ID: 16787752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.
    Chen WM; Lee SJ; Lee PVS
    J Mech Behav Biomed Mater; 2014 Dec; 40():264-274. PubMed ID: 25255421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional fibril-reinforced finite element model of articular cartilage.
    Li LP; Cheung JT; Herzog W
    Med Biol Eng Comput; 2009 Jun; 47(6):607-15. PubMed ID: 19266224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loading and knee alignment have significant influence on cartilage MRI T2 in porcine knee joints.
    Shiomi T; Nishii T; Tanaka H; Yamazaki Y; Murase K; Myoui A; Yoshikawa H; Sugano N
    Osteoarthritis Cartilage; 2010 Jul; 18(7):902-8. PubMed ID: 20472084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modelling of articular joints with biphasic cartilage: recent advances, challenges and opportunities.
    Li J; Xu J; Chen Z; Lu Y; Hua X; Jin Z
    Med Eng Phys; 2024 Apr; 126():104130. PubMed ID: 38621832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of the stresses in a thin layer of articular cartilage in a synovial joint.
    Armstrong CG
    Eng Med; 1986 Apr; 15(2):55-61. PubMed ID: 3709913
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.