These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25088586)

  • 41. Simulation of high tensile Poisson's ratios of articular cartilage with a finite element fibril-reinforced hyperelastic model.
    García JJ
    Med Eng Phys; 2008 Jun; 30(5):590-8. PubMed ID: 17690001
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dependence of nanoscale friction and adhesion properties of articular cartilage on contact load.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Apr; 44(7):1340-5. PubMed ID: 21316681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative biomechanical analysis of human and caprine knee articular cartilage.
    Patil S; Steklov N; Song L; Bae WC; D'Lima DD
    Knee; 2014 Jan; 21(1):119-25. PubMed ID: 23583005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On foundations of discrete element analysis of contact in diarthrodial joints.
    Volokh KY; Chao EY; Armand M
    Mol Cell Biomech; 2007 Jun; 4(2):67-73. PubMed ID: 17937111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Constitutive formulations for the mechanical investigation of colonic tissues.
    Carniel EL; Gramigna V; Fontanella CG; Stefanini C; Natali AN
    J Biomed Mater Res A; 2014 May; 102(5):1243-54. PubMed ID: 23650076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomechanical properties of human articular cartilage under compressive loads.
    Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G
    Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parametric analysis of the stress distribution on the articular cartilage and subchondral bone.
    Wang Y; Wei HW; Yu TC; Cheng CK
    Biomed Mater Eng; 2007; 17(4):241-7. PubMed ID: 17611300
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomechanical, histological and immunohistological studies of patellar cartilage in an ovine model of osteoarthritis induced by lateral meniscectomy.
    Appleyard RC; Ghosh P; Swain MV
    Osteoarthritis Cartilage; 1999 May; 7(3):281-94. PubMed ID: 10329303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study.
    Pierce DM; Trobin W; Raya JG; Trattnig S; Bischof H; Glaser C; Holzapfel GA
    Ann Biomed Eng; 2010 Jul; 38(7):2447-63. PubMed ID: 20225124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cartilage surface characterization by frictional dissipated energy during axially loaded knee flexion--an in vitro sheep model.
    Lorenz A; Rothstock S; Bobrowitsch E; Beck A; Gruhler G; Ipach I; Leichtle UG; Wülker N; Walter C
    J Biomech; 2013 May; 46(8):1427-32. PubMed ID: 23587299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A consolidated concept of joint lubrication.
    Radin EL; Paul IL
    J Bone Joint Surg Am; 1972 Apr; 54(3):607-13. PubMed ID: 5055157
    [No Abstract]   [Full Text] [Related]  

  • 52. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis.
    Natali AN; Carniel EL; Gregersen H
    Med Eng Phys; 2009 Nov; 31(9):1056-62. PubMed ID: 19651531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A technique for measuring instantaneous in vitro contact stress distributions in articular joints.
    Brown TD; Shaw DT
    J Biomech; 1982; 15(4):329-33. PubMed ID: 7096388
    [No Abstract]   [Full Text] [Related]  

  • 54. A nonlinear biphasic viscohyperelastic model for articular cartilage.
    García JJ; Cortés DH
    J Biomech; 2006; 39(16):2991-8. PubMed ID: 16316659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An analytical solution for the radial and tangential displacements on a thin hemispherical layer of articular cartilage.
    Félix Quiñonez A; Summers JL; Fisher J; Jin ZM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):283-93. PubMed ID: 20582612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of grid dimensions on finite element models of an articular surface.
    Galbraith PC; Bryant JT
    J Biomech; 1989; 22(4):385-93. PubMed ID: 2745473
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyperelastic parameter identification of human articular cartilage and substitute materials.
    Weizel A; Distler T; Detsch R; Boccaccini AR; Bräuer L; Paulsen F; Seitz H; Budday S
    J Mech Behav Biomed Mater; 2022 Sep; 133():105292. PubMed ID: 35689988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions.
    Fontanella CG; Nalesso F; Carniel EL; Natali AN
    Med Biol Eng Comput; 2016 Apr; 54(4):653-61. PubMed ID: 26272439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Joint-specific distance thresholds for patient-specific approximations of articular cartilage modeling in the first ray of the foot.
    Marchelli GL; Ledoux WR; Isvilanonda V; Ganter MA; Storti DW
    Med Biol Eng Comput; 2014 Sep; 52(9):773-9. PubMed ID: 25100069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contact of layered elastic spheres as a model of joint contact: effect of tangential load and friction.
    Eberhardt AW; Lewis JL; Keer LM
    J Biomech Eng; 1991 Feb; 113(1):107-8. PubMed ID: 2020169
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.