These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25088745)

  • 21. Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice.
    Jeong KJ; Kim DY; Quan HY; Jo HK; Kim GW; Chung SH
    Fitoterapia; 2014 Mar; 93():150-62. PubMed ID: 24418657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Honokiol activates the LKB1-AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes.
    Seo MS; Kim JH; Kim HJ; Chang KC; Park SW
    Toxicol Appl Pharmacol; 2015 Apr; 284(2):113-24. PubMed ID: 25737164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ERK2-mediated phosphorylation of transcriptional coactivator binding protein PIMT/NCoA6IP at Ser298 augments hepatic gluconeogenesis.
    Kapadia B; Viswakarma N; Parsa KV; Kain V; Behera S; Suraj SK; Babu PP; Kar A; Panda S; Zhu YJ; Jia Y; Thimmapaya B; Reddy JK; Misra P
    PLoS One; 2013; 8(12):e83787. PubMed ID: 24358311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects.
    Swisa A; Granot Z; Tamarina N; Sayers S; Bardeesy N; Philipson L; Hodson DJ; Wikstrom JD; Rutter GA; Leibowitz G; Glaser B; Dor Y
    J Biol Chem; 2015 Aug; 290(34):20934-20946. PubMed ID: 26139601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice.
    Huang J; Simcox J; Mitchell TC; Jones D; Cox J; Luo B; Cooksey RC; Boros LG; McClain DA
    FASEB J; 2013 Jul; 27(7):2845-54. PubMed ID: 23515442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sam68 promotes hepatic gluconeogenesis via CRTC2.
    Qiao A; Zhou J; Xu S; Ma W; Boriboun C; Kim T; Yan B; Deng J; Yang L; Zhang E; Song Y; Ma YC; Richard S; Zhang C; Qiu H; Habegger KM; Zhang J; Qin G
    Nat Commun; 2021 Jun; 12(1):3340. PubMed ID: 34099657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression.
    Viana AY; Sakoda H; Anai M; Fujishiro M; Ono H; Kushiyama A; Fukushima Y; Sato Y; Oshida Y; Uchijima Y; Kurihara H; Asano T
    Diabetes Res Clin Pract; 2006 Aug; 73(2):135-42. PubMed ID: 16503364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism.
    Koo SH; Flechner L; Qi L; Zhang X; Screaton RA; Jeffries S; Hedrick S; Xu W; Boussouar F; Brindle P; Takemori H; Montminy M
    Nature; 2005 Oct; 437(7062):1109-11. PubMed ID: 16148943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of gluconeogenic gene transcription by SIK1-induced ubiquitination and degradation of CRTC1.
    Gao WW; Tang HV; Cheng Y; Chan CP; Chan CP; Jin DY
    Biochim Biophys Acta Gene Regul Mech; 2018 Mar; 1861(3):211-223. PubMed ID: 29408765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis.
    Zhu X; Li H; Wu Y; Zhou J; Yang G; Wang W; Kang D; Ye S
    J Cell Biochem; 2019 Mar; 120(3):4192-4202. PubMed ID: 30260029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oleoylethanolamide Increases Glycogen Synthesis and Inhibits Hepatic Gluconeogenesis via the LKB1/AMPK Pathway in Type 2 Diabetic Model.
    Ren T; Ma A; Zhuo R; Zhang H; Peng L; Jin X; Yao E; Yang L
    J Pharmacol Exp Ther; 2020 Apr; 373(1):81-91. PubMed ID: 32024803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.
    Lee JM; Seo WY; Han HS; Oh KJ; Lee YS; Kim DK; Choi S; Choi BH; Harris RA; Lee CH; Koo SH; Choi HS
    Diabetes; 2016 Jan; 65(1):62-73. PubMed ID: 26340929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LKB1 signalling attenuates early events of adipogenesis and responds to adipogenic cues.
    Gormand A; Berggreen C; Amar L; Henriksson E; Lund I; Albinsson S; Göransson O
    J Mol Endocrinol; 2014 Aug; 53(1):117-30. PubMed ID: 24859970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade.
    Katoh Y; Takemori H; Lin XZ; Tamura M; Muraoka M; Satoh T; Tsuchiya Y; Min L; Doi J; Miyauchi A; Witters LA; Nakamura H; Okamoto M
    FEBS J; 2006 Jun; 273(12):2730-48. PubMed ID: 16817901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo.
    Park J; Yoon YS; Han HS; Kim YH; Ogawa Y; Park KG; Lee CH; Kim ST; Koo SH
    Diabetes; 2014 Nov; 63(11):3659-73. PubMed ID: 24898145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of vasodilator-stimulated phosphoprotein (VASP) in the control of hepatic gluconeogenic gene expression.
    Tateya S; Rizzo-De Leon N; Cheng AM; Dick BP; Lee WJ; Kim ML; O'Brien K; Morton GJ; Schwartz MW; Kim F
    PLoS One; 2019; 14(4):e0215601. PubMed ID: 31017943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase.
    Collins QF; Liu HY; Pi J; Liu Z; Quon MJ; Cao W
    J Biol Chem; 2007 Oct; 282(41):30143-9. PubMed ID: 17724029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis.
    Lombardi MS; Gilliéron C; Berkelaar M; Gabay C
    PLoS One; 2017; 12(10):e0185426. PubMed ID: 28973003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LKB1: a sweet side to Peutz-Jeghers syndrome?
    Carling D
    Trends Mol Med; 2006 Apr; 12(4):144-7. PubMed ID: 16530014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes.
    Henriksson E; Säll J; Gormand A; Wasserstrom S; Morrice NA; Fritzen AM; Foretz M; Campbell DG; Sakamoto K; Ekelund M; Degerman E; Stenkula KG; Göransson O
    J Cell Sci; 2015 Feb; 128(3):472-86. PubMed ID: 25472719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.