These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25088748)

  • 1. In situ preparation of a Ti³⁺ self-doped TiO₂ film with enhanced activity as photoanode by N₂H₄ reduction.
    Mao C; Zuo F; Hou Y; Bu X; Feng P
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10485-9. PubMed ID: 25088748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes.
    Zhang Z; Hedhili MN; Zhu H; Wang P
    Phys Chem Chem Phys; 2013 Oct; 15(37):15637-44. PubMed ID: 23942850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapor-phase hydrothermal synthesis of rutile TiO₂ nanostructured film with exposed pyramid-shaped (111) surface and superiorly photoelectrocatalytic performance.
    Chen J; Zhang H; Liu P; Wang Y; Liu X; Li G; An T; Zhao H
    J Colloid Interface Sci; 2014 Sep; 429():53-61. PubMed ID: 24935189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting.
    Zhang Z; Yang X; Hedhili MN; Ahmed E; Shi L; Wang P
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):691-6. PubMed ID: 24328231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled charge-dynamics in cobalt-doped TiO
    Liu C; Wang F; Zhu S; Xu Y; Liang Q; Chen Z
    J Colloid Interface Sci; 2018 Nov; 530():403-411. PubMed ID: 29982032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon coating stabilized Ti(3+)-doped TiO2 for photocatalytic hydrogen generation under visible light irradiation.
    Fu G; Zhou P; Zhao M; Zhu W; Yan S; Yu T; Zou Z
    Dalton Trans; 2015 Jul; 44(28):12812-7. PubMed ID: 26098384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered Ti-doped FeVO
    Zeng Q; Fu X; Chang S; Zhang Q; Xiong Z; Liu Y; Peng G; Li M
    J Colloid Interface Sci; 2021 Dec; 604():562-567. PubMed ID: 34274717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrocatalytic oxidation of formaldehyde using a Ti/TiO2 foil electrode. Application for its novel and simple photoelectrochemical determination.
    Ojani R; Raoof JB; Zarei E
    Talanta; 2012 Sep; 99():277-82. PubMed ID: 22967552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocurrent enhancement for Ti-doped Fe₂O₃ thin film photoanodes by an in situ solid-state reaction method.
    Miao C; Shi T; Xu G; Ji S; Ye C
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1310-6. PubMed ID: 23347501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Ti-Pt Co-doped α-Fe
    Zhong Z; Zhan G; Du B; Lu X; Qin Z; Xiao J
    J Colloid Interface Sci; 2023 Jul; 641():91-104. PubMed ID: 36924549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile One-Step Route for the Development of in Situ Cocatalyst-Modified Ti
    Kumar R; Govindarajan S; Siri Kiran Janardhana RK; Rao TN; Joshi SV; Anandan S
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27642-27653. PubMed ID: 27667775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation.
    Wang G; Ling Y; Wheeler DA; George KE; Horsley K; Heske C; Zhang JZ; Li Y
    Nano Lett; 2011 Aug; 11(8):3503-9. PubMed ID: 21766825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation.
    Yuan W; Yuan J; Xie J; Li CM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6082-92. PubMed ID: 26908094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations.
    Daghrir R; Drogui P; Delegan N; El Khakani MA
    Water Res; 2013 Nov; 47(17):6801-10. PubMed ID: 24075724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Ta-Doped TiO₂ Nanorod Arrays with Improved Charge Separation for Photoelectrochemical Water Oxidation under FTO Side Illumination.
    He S; Meng Y; Cao Y; Huang S; Yang J; Tong S; Wu M
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30486493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance.
    Wang Y; Zhang YY; Tang J; Wu H; Xu M; Peng Z; Gong XG; Zheng G
    ACS Nano; 2013 Oct; 7(10):9375-83. PubMed ID: 24047133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.