These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25089)

  • 1. Influence of phosphate ligands in abolishing the conformational difference between ribonuclease A and its acid-denatured derivative.
    Das MK; Vithayathil PJ
    Biochim Biophys Acta; 1978 Mar; 533(1):43-50. PubMed ID: 25089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How much is secondary structure responsible for resistance of double-stranded RNA to pancreatic ribonuclease A?
    Libonati M; Palmieri M
    Biochim Biophys Acta; 1978 Apr; 518(2):277-89. PubMed ID: 26405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtilisin modification of monodeamidated ribonuclease-A.
    Manjula BN; Acharya AS; Vithayathil PJ
    Biochem J; 1977 Aug; 165(2):337-45. PubMed ID: 921753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and enzymic activity of ribonuclease-A esterified at glutamic acid-49 and aspartic acid-53.
    Acharya AS; Manjula BN; Vithayathil PJ
    Biochem J; 1978 Sep; 173(3):821-30. PubMed ID: 708373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irreversible thermal denaturation of bovine pancreatic ribonuclease-A. Physico-chemical characterization of initial products.
    Ramnath S; Vithayathil PJ
    Int J Pept Protein Res; 1981 Jan; 17(1):107-17. PubMed ID: 6262254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral properties of phosphopyridoxyl-Lys-7(-41)-ribonuclease A.
    Dudkin SM; Karabachyan LV; Borisova SN; Shlyapnikov SV; Karpeisky MY; Geidarov TG
    Biochim Biophys Acta; 1975 Mar; 386(1):275-82. PubMed ID: 236023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering.
    Kamatari YO; Konno T; Kataoka M; Akasaka K
    J Mol Biol; 1996 Jun; 259(3):512-23. PubMed ID: 8676385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):55-63. PubMed ID: 39067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A.
    Catanzano F; Graziano G; Capasso S; Barone G
    Protein Sci; 1997 Aug; 6(8):1682-93. PubMed ID: 9260280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic activity of Ntau-carboxymethylhistidine-12 ribonuclease: pH dependence.
    Machuga E; Klapper MH
    Biochim Biophys Acta; 1977 Apr; 481(2):526-41. PubMed ID: 15611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of homologous proteins. The refolding of different ribonucleases is independent of sequence variations, proline content and glycosylation.
    Krebs H; Schmid FX; Jaenicke R
    J Mol Biol; 1983 Sep; 169(2):619-35. PubMed ID: 6620387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further evidence for an allosteric model for ribonuclease.
    Walker EJ; Ralston GB; Darvey IG
    Biochem J; 1976 Feb; 153(2):329-37. PubMed ID: 1275891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deamidated active intermediates in the irreversible acid denaturation of ribonuclease-A.
    Manjula BN; Acharya AS; Vithayathil PJ
    Int J Pept Protein Res; 1976; 8(3):275-82. PubMed ID: 6396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Conformational stability of ribonuclease A complexes with specific inhibitors].
    Avramova ZV; Dudkin SM; Ivanov VI; Karpeĭskiĭ MIa
    Mol Biol (Mosk); 1978; 12(3):612-9. PubMed ID: 661825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An allosteric model for ribonuclease.
    Walker EJ; Ralston GB; Darvey IG
    Biochem J; 1975 Jun; 147(3):425-33. PubMed ID: 1167152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assignment of the imidazole ring nitrogen protons of histidine 48 in the proton NMR spectrum of ribonuclease A in water solution.
    Patel DJ; Canuel LL; Bovey FA; Woodward C
    Biochim Biophys Acta; 1975 Aug; 400(2):275-82. PubMed ID: 240416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amide proton exchange used to monitor the formation of a stable alpha-helix by residues 3 to 13 during folding of ribonuclease S.
    Brems DN; Baldwin RL
    J Mol Biol; 1984 Dec; 180(4):1141-56. PubMed ID: 6098689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the state of tyrosyl residues in a ribonuclease from seminal vesicles.
    Irie M; Suito F
    J Biochem; 1975 May; 77(5):1075-84. PubMed ID: 239931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.