These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25089016)
1. Ultra-high capacitance hematite thin films with controlled nanoscopic morphologies. Liu J; Lee E; Kim YT; Kwon YU Nanoscale; 2014 Sep; 6(18):10643-9. PubMed ID: 25089016 [TBL] [Abstract][Full Text] [Related]
2. Hematite thin films with various nanoscopic morphologies through control of self-assembly structures. Liu J; Kim YT; Kwon YU Nanoscale Res Lett; 2015; 10():228. PubMed ID: 26034420 [TBL] [Abstract][Full Text] [Related]
3. Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting. Liu J; Shahid M; Ko YS; Kim E; Ahn TK; Park JH; Kwon YU Phys Chem Chem Phys; 2013 Jun; 15(24):9775-82. PubMed ID: 23674049 [TBL] [Abstract][Full Text] [Related]
4. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. Feng D; Lv Y; Wu Z; Dou Y; Han L; Sun Z; Xia Y; Zheng G; Zhao D J Am Chem Soc; 2011 Sep; 133(38):15148-56. PubMed ID: 21854032 [TBL] [Abstract][Full Text] [Related]
5. Thin Water Films at Multifaceted Hematite Particle Surfaces. Boily JF; Yeşilbaş M; Uddin MM; Baiqing L; Trushkina Y; Salazar-Alvarez G Langmuir; 2015 Dec; 31(48):13127-37. PubMed ID: 26559158 [TBL] [Abstract][Full Text] [Related]
6. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Wang D; Wang Q; Wang T Nanotechnology; 2011 Apr; 22(13):135604. PubMed ID: 21343642 [TBL] [Abstract][Full Text] [Related]
7. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Klahr BM; Martinson AB; Hamann TW Langmuir; 2011 Jan; 27(1):461-8. PubMed ID: 21126056 [TBL] [Abstract][Full Text] [Related]
8. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins. Kato K; Nakamura H; Yamauchi Y; Nakanishi K; Tomita M Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():42-8. PubMed ID: 24857463 [TBL] [Abstract][Full Text] [Related]
9. Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Li L; Yu Y; Meng F; Tan Y; Hamers RJ; Jin S Nano Lett; 2012 Feb; 12(2):724-31. PubMed ID: 22214175 [TBL] [Abstract][Full Text] [Related]
10. Platinum films with controlled 3-dimensional nanoscopic morphologies and their effects on surface enhanced Raman scattering. Lee HJ; Lee UH; Park JY; Yoo SH; Park S; Kwon YU Chem Asian J; 2009 Aug; 4(8):1284-8. PubMed ID: 19575375 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous titania thin film with highly ordered and fully accessible vertical pores and crystalline walls. Koh CW; Lee UH; Song JK; Lee HR; Kim MH; Suh M; Kwon YU Chem Asian J; 2008 May; 3(5):862-7. PubMed ID: 18386267 [TBL] [Abstract][Full Text] [Related]
12. Ordered mesoporous α-Fe2O3 (hematite) thin-film electrodes for application in high rate rechargeable lithium batteries. Brezesinski K; Haetge J; Wang J; Mascotto S; Reitz C; Rein A; Tolbert SH; Perlich J; Dunn B; Brezesinski T Small; 2011 Feb; 7(3):407-14. PubMed ID: 21294271 [TBL] [Abstract][Full Text] [Related]
13. Effects of template and precursor chemistry on structure and properties of mesoporous TiO2 thin films. Li XS; Fryxell GE; Birnbaum JC; Wang C Langmuir; 2004 Oct; 20(21):9095-102. PubMed ID: 15461492 [TBL] [Abstract][Full Text] [Related]
14. Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. Liu Y; Szeifert JM; Feckl JM; Mandlmeier B; Rathousky J; Hayden O; Fattakhova-Rohlfing D; Bein T ACS Nano; 2010 Sep; 4(9):5373-81. PubMed ID: 20734979 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical impedance study of the hematite/water interface. Shimizu K; Lasia A; Boily JF Langmuir; 2012 May; 28(20):7914-20. PubMed ID: 22540260 [TBL] [Abstract][Full Text] [Related]
16. Improvement of the electron collection efficiency in porous hematite using a thin iron oxide underlayer: towards efficient all-iron based photoelectrodes. Dalle Carbonare N; Carli S; Argazzi R; Orlandi M; Bazzanella N; Miotello A; Caramori S; Bignozzi CA Phys Chem Chem Phys; 2015 Nov; 17(44):29661-70. PubMed ID: 26477966 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. Chen PC; Shen G; Shi Y; Chen H; Zhou C ACS Nano; 2010 Aug; 4(8):4403-11. PubMed ID: 20731426 [TBL] [Abstract][Full Text] [Related]
18. Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. Yan W; Ayvazian T; Kim J; Liu Y; Donavan KC; Xing W; Yang Y; Hemminger JC; Penner RM ACS Nano; 2011 Oct; 5(10):8275-87. PubMed ID: 21942449 [TBL] [Abstract][Full Text] [Related]
19. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis. Yan D; Tao J; Kisslinger K; Cen J; Wu Q; Orlov A; Liu M Nanoscale; 2015 Nov; 7(44):18515-23. PubMed ID: 26499938 [TBL] [Abstract][Full Text] [Related]
20. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation. Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]