These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25089290)

  • 1. Construction materials used in the historical Roman era bath in Myra.
    Oguz C; Turker F; Kockal NU
    ScientificWorldJournal; 2014; 2014():536105. PubMed ID: 25089290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of rubble from building demolition in mortars.
    Corinaldesi V; Giuggiolini M; Moriconi G
    Waste Manag; 2002; 22(8):893-9. PubMed ID: 12423051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.
    Loryuenyong V; Panyachai T; Kaewsimork K; Siritai C
    Waste Manag; 2009 Oct; 29(10):2717-21. PubMed ID: 19545990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mortars for Conservation of Late 19th and Early 20th Century Buildings-Combination of Natural Cements with Air Lime.
    Andrejkovičová S; Maljaee H; Rocha D; Rocha F; Soares MR; Velosa A
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of peat on physicomechanical properties of cemented brick.
    Islam SM; Hashim R; Islam AB; Kurnia R
    ScientificWorldJournal; 2014; 2014():328516. PubMed ID: 24982941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of in situ spectroscopy and chemometric techniques to discriminate different types of Roman bricks and the influence of microclimate environment.
    Scatigno C; Prieto-Taboada N; García-Florentino C; Fdez-Ortiz de Vallejuelo S; Maguregui M; Madariaga JM
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6285-6299. PubMed ID: 29247413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil-Cement Bricks Development Using Polymeric Waste.
    Metzker SLO; Sabino TPF; Mendes JF; Ribeiro AGC; Mendes RF
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):21034-21048. PubMed ID: 34748178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling waste brick from construction and demolition of buildings as pozzolanic materials.
    Lin KL; Wu HH; Shie JL; Hwang CL; An Cheng
    Waste Manag Res; 2010 Jul; 28(7):653-9. PubMed ID: 20154026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of waste brick as a partial replacement of cement in mortar.
    Naceri A; Hamina MC
    Waste Manag; 2009 Aug; 29(8):2378-84. PubMed ID: 19383569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars.
    Pavlíková M; Zemanová L; Pokorný J; Záleská M; Jankovský O; Lojka M; Pavlík Z
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31295888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Mortar Strength in Historical Brick Masonry Using the Penetrometer Test and Double Punch Test.
    Łątka D; Matysek P
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignocellulosic materials as soil-cement brick reinforcement.
    Sabino TPF; Coelho NPF; Andrade NC; Metzker SLO; Viana QS; Mendes JF; Mendes RF
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21769-21788. PubMed ID: 34773234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reuse of grits waste for the production of soil--cement bricks.
    Siqueira FB; Holanda JN
    J Environ Manage; 2013 Dec; 131():1-6. PubMed ID: 24140481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.
    Yang F; Zhang B; Ma Q
    Acc Chem Res; 2010 Jun; 43(6):936-44. PubMed ID: 20455571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings.
    Pavlík Z; Pokorný J; Pavlíková M; Zemanová L; Záleská M; Vyšvařil M; Žižlavský T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possibility of fly ash and blast furnace slag disposal by using these environmental wastes as substitutes in portland cement.
    Bayraktar OY
    Environ Monit Assess; 2019 Aug; 191(9):560. PubMed ID: 31407116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.