These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25089445)

  • 1. Generation of non-classical states of mirror motion in the single-photon strong-coupling regime.
    Gu WJ; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Jul; 22(15):18254-67. PubMed ID: 25089445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system.
    Gu WJ; Li GX
    Opt Express; 2013 Aug; 21(17):20423-40. PubMed ID: 24105587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity.
    Yuan M; Singh V; Blanter YM; Steele GA
    Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving photon number states in a superconducting circuit.
    Schuster DI; Houck AA; Schreier JA; Wallraff A; Gambetta JM; Blais A; Frunzio L; Majer J; Johnson B; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Feb; 445(7127):515-8. PubMed ID: 17268464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-photon optomechanics.
    Nunnenkamp A; Børkje K; Girvin SM
    Phys Rev Lett; 2011 Aug; 107(6):063602. PubMed ID: 21902323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system.
    Wang Y; Liu B; Lian J; Liang J
    Opt Express; 2012 Apr; 20(9):10106-14. PubMed ID: 22535102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heralded single-phonon preparation, storage, and readout in cavity optomechanics.
    Galland C; Sangouard N; Piro N; Gisin N; Kippenberg TJ
    Phys Rev Lett; 2014 Apr; 112(14):143602. PubMed ID: 24765960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Squeezed optomechanics with phase-matched amplification and dissipation.
    Lü XY; Wu Y; Johansson JR; Jing H; Zhang J; Nori F
    Phys Rev Lett; 2015 Mar; 114(9):093602. PubMed ID: 25793814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sideband cooling beyond the quantum backaction limit with squeezed light.
    Clark JB; Lecocq F; Simmonds RW; Aumentado J; Teufel JD
    Nature; 2017 Jan; 541(7636):191-195. PubMed ID: 28079081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble.
    Liu YM; Bai CH; Wang DY; Wang T; Zheng MH; Wang HF; Zhu AD; Zhang S
    Opt Express; 2018 Mar; 26(5):6143-6157. PubMed ID: 29529808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon blockade effect in optomechanical systems.
    Rabl P
    Phys Rev Lett; 2011 Aug; 107(6):063601. PubMed ID: 21902322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a nonlinear coherent state of the mechanical resonator in an optomechanical microcavity.
    Yan Y; Zhu JP; Li GX
    Opt Express; 2016 Jun; 24(12):13590-609. PubMed ID: 27410375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced quantum nonlinearities in a two-mode optomechanical system.
    Ludwig M; Safavi-Naeini AH; Painter O; Marquardt F
    Phys Rev Lett; 2012 Aug; 109(6):063601. PubMed ID: 23006265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state mechanical squeezing in a double-cavity optomechanical system.
    Wang DY; Bai CH; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Dec; 6():38559. PubMed ID: 27917939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant interactions between a Mollow triplet sideband and a strongly coupled cavity.
    Kim H; Shen TC; Roy-Choudhury K; Solomon GS; Waks E
    Phys Rev Lett; 2014 Jul; 113(2):027403. PubMed ID: 25062230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems.
    Cotrufo M; Fiore A; Verhagen E
    Phys Rev Lett; 2017 Mar; 118(13):133603. PubMed ID: 28409944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity.
    Boozer AD; Boca A; Miller R; Northup TE; Kimble HJ
    Phys Rev Lett; 2006 Aug; 97(8):083602. PubMed ID: 17026303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.