These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25089449)

  • 41. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites.
    Cox JD; Singh MR; Antón MA; Carreño F
    J Phys Condens Matter; 2013 Sep; 25(38):385302. PubMed ID: 23988724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Semiconductor Hyperbolic Metamaterials at the Quantum Limit.
    Montaño I; Campione S; Klem JF; Beechem TE; Wolf O; Sinclair MB; Luk TS
    Sci Rep; 2018 Nov; 8(1):16694. PubMed ID: 30420700
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Angular selection of transmitted light and enhanced spontaneous emission in grating-coupled hyperbolic metamaterials.
    Lee D; Kim M; Lee J; Ko B; Park HJ; Rho J
    Opt Express; 2021 Jul; 29(14):21458-21472. PubMed ID: 34265933
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of gold nanoparticle-enhanced fluorescent nanocomposites.
    Chen J; Jin Y; Fahruddin N; Zhao JX
    Langmuir; 2013 Feb; 29(5):1584-91. PubMed ID: 23305344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.
    Kosionis SG; Terzis AF; Sadeghi SM; Paspalakis E
    J Phys Condens Matter; 2013 Jan; 25(4):045304. PubMed ID: 23257986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Size-dependent optical properties of shallow quantum dot excitons close to a dielectric-hyperbolic material interface.
    Ahn KJ
    Opt Express; 2021 Feb; 29(4):5098-5109. PubMed ID: 33726051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Non-blinking quantum dot with a plasmonic nanoshell resonator.
    Ji B; Giovanelli E; Habert B; Spinicelli P; Nasilowski M; Xu X; Lequeux N; Hugonin JP; Marquier F; Greffet JJ; Dubertret B
    Nat Nanotechnol; 2015 Feb; 10(2):170-5. PubMed ID: 25581887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects.
    Su XR; Zhang W; Zhou L; Peng XN; Wang QQ
    Opt Express; 2010 Mar; 18(7):6516-21. PubMed ID: 20389674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterned multilayer metamaterial for fast and efficient photon collection from dipolar emitters.
    Makarova OA; Shalaginov MY; Bogdanov S; Kildishev AV; Boltasseva A; Shalaev VM
    Opt Lett; 2017 Oct; 42(19):3968-3971. PubMed ID: 28957174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.
    Lu D; Kan JJ; Fullerton EE; Liu Z
    Nat Nanotechnol; 2014 Jan; 9(1):48-53. PubMed ID: 24390565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling spontaneous emission with metamaterials.
    Noginov MA; Li H; Barnakov YA; Dryden D; Nataraj G; Zhu G; Bonner CE; Mayy M; Jacob Z; Narimanov EE
    Opt Lett; 2010 Jun; 35(11):1863-5. PubMed ID: 20517443
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strong Coupling in Semiconductor Hyperbolic Metamaterials.
    Sohr P; Wei D; Wang Z; Law S
    Nano Lett; 2021 Dec; 21(23):9951-9957. PubMed ID: 34787424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics.
    Ridolfo A; Di Stefano O; Fina N; Saija R; Savasta S
    Phys Rev Lett; 2010 Dec; 105(26):263601. PubMed ID: 21231659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors.
    Jakubczyk T; Franke H; Smoleński T; Sciesiek M; Pacuski W; Golnik A; Schmidt-Grund R; Grundmann M; Kruse C; Hommel D; Kossacki P
    ACS Nano; 2014 Oct; 8(10):9970-8. PubMed ID: 25181393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials.
    Tumkur TU; Kitur JK; Bonner CE; Poddubny AN; Narimanov EE; Noginov MA
    Faraday Discuss; 2015; 178():395-412. PubMed ID: 25803206
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.
    He Y
    Nanotechnology; 2017 Jun; 28(25):255203. PubMed ID: 28453443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantum dots and nanocomposites.
    Mansur HS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(2):113-29. PubMed ID: 20104596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effectiveness of thin films in lieu of hyperbolic metamaterials in the near field.
    Miller OD; Johnson SG; Rodriguez AW
    Phys Rev Lett; 2014 Apr; 112(15):157402. PubMed ID: 24785070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust Extraction of Hyperbolic Metamaterial Permittivity using Total Internal Reflection Ellipsometry.
    Zhang C; Hong N; Ji C; Zhu W; Chen X; Agrawal A; Zhang Z; Tiwald TE; Schoeche S; Hilfiker JN; Guo LJ; Lezec HJ
    ACS Photonics; 2018; 5():. PubMed ID: 30997368
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer.
    Kim P; Doss NM; Tillotson JP; Hotchkiss PJ; Pan MJ; Marder SR; Li J; Calame JP; Perry JW
    ACS Nano; 2009 Sep; 3(9):2581-92. PubMed ID: 19655729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.