These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25089486)

  • 1. Feasibility of resonant metalens for the subwavelength imaging using a single sensor in the far field.
    Li L; Li F; Cui TJ
    Opt Express; 2014 Jul; 22(15):18688-97. PubMed ID: 25089486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far-field imaging beyond diffraction limit using single sensor in combination with a resonant aperture.
    Li L; Li F; Cui TJ; Yao K
    Opt Express; 2015 Jan; 23(1):401-12. PubMed ID: 25835685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies.
    Wang R; Wang BZ; Gong ZS; Ding X
    Sci Rep; 2015 Jun; 5():11131. PubMed ID: 26053074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant metalenses for breaking the diffraction barrier.
    Lemoult F; Lerosey G; de Rosny J; Fink M
    Phys Rev Lett; 2010 May; 104(20):203901. PubMed ID: 20867029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of objects within subwavelength range by using the near field of a dipole.
    Kolkıran A; Agarwal GS
    Opt Lett; 2012 Jun; 37(12):2313-5. PubMed ID: 22739892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disordered Nonlinear Metalens for Raman Spectral Nanoimaging.
    Kharintsev SS; Kharitonov AV; Gazizov AR; Kazarian SG
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3862-3872. PubMed ID: 31913005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-thin sub-diffraction metalens with a wide field-of-view for UV focusing.
    Dong L; Kong W; Zhang F; Liu L; Pu M; Wang C; Li X; Ma X; Luo X
    Opt Lett; 2024 Mar; 49(5):1189-1192. PubMed ID: 38426970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres.
    Steshenko S; Capolino F; Alitalo P; Tretyakov S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016607. PubMed ID: 21867334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Far-field optical hyperlens magnifying sub-diffraction-limited objects.
    Liu Z; Lee H; Xiong Y; Sun C; Zhang X
    Science; 2007 Mar; 315(5819):1686. PubMed ID: 17379801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing.
    Merlin R
    Science; 2007 Aug; 317(5840):927-9. PubMed ID: 17626847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-insensitive high-numerical-aperture metalens for wide-field super-resolution imaging.
    Chen L; Liu W; Li Z; Zhang Y; Cheng H; Tian J; Chen S
    Opt Lett; 2024 Apr; 49(7):1640-1643. PubMed ID: 38560825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects.
    Repän T; Lavrinenko AV; Zhukovsky SV
    Opt Express; 2015 Sep; 23(19):25350-64. PubMed ID: 26406731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Far-field acoustic subwavelength imaging and edge detection based on spatial filtering and wave vector conversion.
    Ma C; Kim S; Fang NX
    Nat Commun; 2019 Jan; 10(1):204. PubMed ID: 30643126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polychromatic approach to far-field superlensing at visible wavelengths.
    Lemoult F; Fink M; Lerosey G
    Nat Commun; 2012 Jun; 3():889. PubMed ID: 22673916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.
    Wang L; Li L; Li Y; Zhang HC; Cui TJ
    Sci Rep; 2016 Jun; 6():26959. PubMed ID: 27246668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies.
    Zhang T; Chen L; Li X
    Opt Express; 2013 Sep; 21(18):20888-99. PubMed ID: 24103962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination.
    Zhao Z; Luo Y; Zhang W; Wang C; Gao P; Wang Y; Pu M; Yao N; Zhao C; Luo X
    Sci Rep; 2015 Oct; 5():15320. PubMed ID: 26477856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution imaging via spatiotemporal frequency shifting and coherent detection.
    Alekseyev L; Narimanov E; Khurgin J
    Opt Express; 2011 Oct; 19(22):22350-7. PubMed ID: 22109076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography.
    Li L; Li F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033205. PubMed ID: 24125378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunneling.
    Su H; Zhou X; Xu X; Hu G
    J Acoust Soc Am; 2014 Apr; 135(4):1686-91. PubMed ID: 25234968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.