BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25089516)

  • 1. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability.
    Aulin C; Salazar-Alvarez G; Lindström T
    Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocomposite cellulose-alginate films: promising packaging materials.
    Sirviö JA; Kolehmainen A; Liimatainen H; Niinimäki J; Hormi OE
    Food Chem; 2014 May; 151():343-51. PubMed ID: 24423542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-strength nanocellulose-talc hybrid barrier films.
    Liimatainen H; Ezekiel N; Sliz R; Ohenoja K; Sirviö JA; Berglund L; Hormi O; Niinimäki J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13412-8. PubMed ID: 24215630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphonated nanocelluloses from sequential oxidative-reductive treatment-Physicochemical characteristics and thermal properties.
    Sirviö JA; Hasa T; Ahola J; Liimatainen H; Niinimäki J; Hormi O
    Carbohydr Polym; 2015 Nov; 133():524-32. PubMed ID: 26344310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.
    Larsson PA; Berglund LA; Wågberg L
    Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of cellulose nanomaterials via cellulose oxalates.
    Henschen J; Li D; Ek M
    Carbohydr Polym; 2019 Jun; 213():208-216. PubMed ID: 30879662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of nanocellulose gels and films from invasive tree species.
    Almeida RO; Ramos A; Alves L; Potsi E; Ferreira PJT; Carvalho MGVS; Rasteiro MG; Gamelas JAF
    Int J Biol Macromol; 2021 Oct; 188():1003-1011. PubMed ID: 34371043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination.
    Sirviö JA; Visanko M; Laitinen O; Ämmälä A; Liimatainen H
    Carbohydr Polym; 2016 Jan; 136():581-7. PubMed ID: 26572390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals.
    Sirviö JA; Honkaniemi S; Visanko M; Liimatainen H
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19691-9. PubMed ID: 26280660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties.
    Espinosa E; Bascón-Villegas I; Rosal A; Pérez-Rodríguez F; Chinga-Carrasco G; Rodríguez A
    Int J Biol Macromol; 2019 Dec; 141():197-206. PubMed ID: 31479671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose.
    Wakabayashi M; Fujisawa S; Saito T; Isogai A
    Front Chem; 2020; 8():37. PubMed ID: 32117870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.
    Soeta H; Fujisawa S; Saito T; Berglund L; Isogai A
    ACS Appl Mater Interfaces; 2015 May; 7(20):11041-6. PubMed ID: 25946413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications.
    Rees A; Powell LC; Chinga-Carrasco G; Gethin DT; Syverud K; Hill KE; Thomas DW
    Biomed Res Int; 2015; 2015():925757. PubMed ID: 26090461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive investigation on modified cellulose nanocrystals and their films properties.
    El Miri N; Heggset EB; Wallsten S; Svedberg A; Syverud K; Norgren M
    Int J Biol Macromol; 2022 Oct; 219():998-1008. PubMed ID: 35963351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.