These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 25089685)
1. Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Machado S; Grosso JP; Nouws HPA; Albergaria JT; Delerue-Matos C Sci Total Environ; 2014 Oct; 496():233-240. PubMed ID: 25089685 [TBL] [Abstract][Full Text] [Related]
2. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Machado S; Pacheco JG; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2015 Nov; 533():76-81. PubMed ID: 26151651 [TBL] [Abstract][Full Text] [Related]
3. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Machado S; Stawiński W; Slonina P; Pinto AR; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2013 Sep; 461-462():323-9. PubMed ID: 23738986 [TBL] [Abstract][Full Text] [Related]
4. Green production of zero-valent iron nanoparticles using tree leaf extracts. Machado S; Pinto SL; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2013 Feb; 445-446():1-8. PubMed ID: 23298788 [TBL] [Abstract][Full Text] [Related]
5. Effect of nanoscale zero-valent iron confined in mesostructure on Escherichia coli. Sun X; Yan Y; Wang M; Han Z Environ Sci Pollut Res Int; 2017 Oct; 24(30):24038-24045. PubMed ID: 28913810 [TBL] [Abstract][Full Text] [Related]
6. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Rodríguez Couto S Biotechnol J; 2008 Jul; 3(7):859-70. PubMed ID: 18543242 [TBL] [Abstract][Full Text] [Related]
7. Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction. Woo H; Park J; Lee S; Lee S Chemosphere; 2014 Feb; 97():146-52. PubMed ID: 24290304 [TBL] [Abstract][Full Text] [Related]
8. Cr(VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement. Singh IB; Singh DR Environ Technol; 2002 Jan; 23(1):85-95. PubMed ID: 11918404 [TBL] [Abstract][Full Text] [Related]
9. Solid industrial wastes and their management in Asegra (Granada, Spain). Casares ML; Ulierte N; Matarán A; Ramos A; Zamorano M Waste Manag; 2005; 25(10):1075-82. PubMed ID: 15936934 [TBL] [Abstract][Full Text] [Related]
10. Recycling and reuse of industrial wastes in Taiwan. Wei MS; Huang KH Waste Manag; 2001; 21(1):93-7. PubMed ID: 11150138 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes. Hidalgo D; Sastre E; Gómez M; Nieto P Environ Technol; 2012; 33(13-15):1497-503. PubMed ID: 22988607 [TBL] [Abstract][Full Text] [Related]
12. Effects of zero-valent iron and magnetite on ethanol and lactic acid production in the anaerobic fermentation of food waste. Li X; Ma R; Zhu L; Zhang X; Lin C; Tang Y; Huang Z; Wang C J Environ Manage; 2023 Nov; 345():118928. PubMed ID: 37683382 [TBL] [Abstract][Full Text] [Related]
13. The status and developments of leather solid waste treatment: A mini-review. Jiang H; Liu J; Han W Waste Manag Res; 2016 May; 34(5):399-408. PubMed ID: 26944068 [TBL] [Abstract][Full Text] [Related]
15. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity. Sun X; Yan Y; Li J; Han W; Wang L J Hazard Mater; 2014 Feb; 266():26-33. PubMed ID: 24374562 [TBL] [Abstract][Full Text] [Related]
16. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge. Suanon F; Sun Q; Mama D; Li J; Dimon B; Yu CP Water Res; 2016 Jan; 88():897-903. PubMed ID: 26613183 [TBL] [Abstract][Full Text] [Related]
17. Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron: Synergetic effect, efficiency optimization and mechanism. Li X; Zhao Y; Xi B; Meng X; Gong B; Li R; Peng X; Liu H J Environ Sci (China); 2017 Feb; 52():8-17. PubMed ID: 28254061 [TBL] [Abstract][Full Text] [Related]
18. Biochemical methane potential of raw and pre-treated meat-processing wastes. Cavaleiro AJ; Ferreira T; Pereira F; Tommaso G; Alves MM Bioresour Technol; 2013 Feb; 129():519-25. PubMed ID: 23266854 [TBL] [Abstract][Full Text] [Related]
19. Mixed food waste as renewable feedstock in succinic acid fermentation. Sun Z; Li M; Qi Q; Gao C; Lin CS Appl Biochem Biotechnol; 2014 Nov; 174(5):1822-33. PubMed ID: 25149459 [TBL] [Abstract][Full Text] [Related]
20. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Jacukowicz-Sobala I; Ociński D; Kociołek-Balawejder E Waste Manag Res; 2015 Jul; 33(7):612-29. PubMed ID: 26060197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]