These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 25089688)
1. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network. Zhou Q; Jiang H; Wang J; Zhou J Sci Total Environ; 2014 Oct; 496():264-274. PubMed ID: 25089688 [TBL] [Abstract][Full Text] [Related]
2. Daily air quality index forecasting with hybrid models: A case in China. Zhu S; Lian X; Liu H; Hu J; Wang Y; Che J Environ Pollut; 2017 Dec; 231(Pt 2):1232-1244. PubMed ID: 28939124 [TBL] [Abstract][Full Text] [Related]
3. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki. Voukantsis D; Karatzas K; Kukkonen J; Räsänen T; Karppinen A; Kolehmainen M Sci Total Environ; 2011 Mar; 409(7):1266-76. PubMed ID: 21276603 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004 [TBL] [Abstract][Full Text] [Related]
5. A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations. Wang P; Liu Y; Qin Z; Zhang G Sci Total Environ; 2015 Feb; 505():1202-12. PubMed ID: 25461118 [TBL] [Abstract][Full Text] [Related]
6. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
7. Daily PM Sun W; Sun J J Environ Manage; 2017 Mar; 188():144-152. PubMed ID: 27988447 [TBL] [Abstract][Full Text] [Related]
8. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
9. An ensemble long short-term memory neural network for hourly PM Bai Y; Zeng B; Li C; Zhang J Chemosphere; 2019 May; 222():286-294. PubMed ID: 30708163 [TBL] [Abstract][Full Text] [Related]
10. An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Jian L; Zhao Y; Zhu YP; Zhang MB; Bertolatti D Sci Total Environ; 2012 Jun; 426():336-45. PubMed ID: 22522077 [TBL] [Abstract][Full Text] [Related]
11. Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM Niu M; Gan K; Sun S; Li F J Environ Manage; 2017 Jul; 196():110-118. PubMed ID: 28284128 [TBL] [Abstract][Full Text] [Related]
12. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956 [TBL] [Abstract][Full Text] [Related]
13. Research and application of a novel hybrid air quality early-warning system: A case study in China. Li C; Zhu Z Sci Total Environ; 2018 Jun; 626():1421-1438. PubMed ID: 29898549 [TBL] [Abstract][Full Text] [Related]
14. A Hybrid Forecasting Approach to Air Quality Time Series Based on Endpoint Condition and Combined Forecasting Model. Zhu J; Wu P; Chen H; Zhou L; Tao Z Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30200597 [TBL] [Abstract][Full Text] [Related]
15. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Wang WC; Chau KW; Qiu L; Chen YB Environ Res; 2015 May; 139():46-54. PubMed ID: 25684671 [TBL] [Abstract][Full Text] [Related]
16. Forecasting PM10 in metropolitan areas: Efficacy of neural networks. Fernando HJ; Mammarella MC; Grandoni G; Fedele P; Di Marco R; Dimitrova R; Hyde P Environ Pollut; 2012 Apr; 163():62-7. PubMed ID: 22325432 [TBL] [Abstract][Full Text] [Related]
17. Linear and nonlinear modeling approaches for urban air quality prediction. Singh KP; Gupta S; Kumar A; Shukla SP Sci Total Environ; 2012 Jun; 426():244-55. PubMed ID: 22542239 [TBL] [Abstract][Full Text] [Related]
18. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China. Xu Y; Du P; Wang J Environ Pollut; 2017 Apr; 223():435-448. PubMed ID: 28126387 [TBL] [Abstract][Full Text] [Related]
19. Development of a stacked ensemble model for forecasting and analyzing daily average PM Zhai B; Chen J Sci Total Environ; 2018 Sep; 635():644-658. PubMed ID: 29679837 [TBL] [Abstract][Full Text] [Related]
20. PM2.5 forecasting for an urban area based on deep learning and decomposition method. Zaini N; Ean LW; Ahmed AN; Abdul Malek M; Chow MF Sci Rep; 2022 Oct; 12(1):17565. PubMed ID: 36266317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]