These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Radially and azimuthally polarized nonparaxial Bessel beams made simple. Ornigotti M; Aiello A Opt Express; 2013 Jul; 21(13):15530-7. PubMed ID: 23842340 [TBL] [Abstract][Full Text] [Related]
3. Simple and effective method for the analytic description of important optical beams when truncated by finite apertures. Zamboni-Rached M; Recami E; Balma M Appl Opt; 2012 Jun; 51(16):3370-9. PubMed ID: 22695572 [TBL] [Abstract][Full Text] [Related]
4. Paraxial and nonparaxial polynomial beams and the analytic approach to propagation. Dennis MR; Götte JB; King RP; Morgan MA; Alonso MA Opt Lett; 2011 Nov; 36(22):4452-4. PubMed ID: 22089594 [TBL] [Abstract][Full Text] [Related]
5. The analytical vectorial structure of a nonparaxial Gaussian beam close to the source. Zhou G Opt Express; 2008 Mar; 16(6):3504-14. PubMed ID: 18542443 [TBL] [Abstract][Full Text] [Related]
6. Application of the multiscale singular perturbation method to nonparaxial beam propagations in free space. Deng D; Guo Q; Lan S; Yang X J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3317-25. PubMed ID: 17912326 [TBL] [Abstract][Full Text] [Related]
7. Derivation of the scalar radiative transfer equation from energy conservation of Maxwell's equations in the far field. Ripoll J J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1765-75. PubMed ID: 21811340 [TBL] [Abstract][Full Text] [Related]
15. A derivation of Maxwell's equations using the Heaviside notation. Hampshire DP Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2134):. PubMed ID: 30373937 [TBL] [Abstract][Full Text] [Related]
16. Bessel-Gauss beams as rigorous solutions of the Helmholtz equation. April A J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2100-7. PubMed ID: 21979515 [TBL] [Abstract][Full Text] [Related]