These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25090160)

  • 1. Insights into pharmaceutical nanocrystal dissolution: a molecular dynamics simulation study on aspirin.
    Greiner M; Elts E; Briesen H
    Mol Pharm; 2014 Sep; 11(9):3009-16. PubMed ID: 25090160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics of drug crystal dissolution: simulation of acetaminophen form I in water.
    Gao Y; Olsen KW
    Mol Pharm; 2013 Mar; 10(3):905-17. PubMed ID: 23339470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in situ dissolution study of aspirin crystal planes (100) and (001) by atomic force microscopy.
    Danesh A; Connell SD; Davies MC; Roberts CJ; Tendler SJ; Williams PM; Wilkins MJ
    Pharm Res; 2001 Mar; 18(3):299-303. PubMed ID: 11442268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of surface defects at the aspirin/water interface.
    Schneider J; Zheng C; Reuter K
    J Chem Phys; 2014 Sep; 141(12):124702. PubMed ID: 25273456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocrystal Dissolution Kinetics and Solubility Increase Prediction from Molecular Dynamics: The Case of α-, β-, and γ-Glycine.
    Parks C; Koswara A; Tung HH; Nere NK; Bordawekar S; Nagy ZK; Ramkrishna D
    Mol Pharm; 2017 Apr; 14(4):1023-1032. PubMed ID: 28271901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cannibalistic Approach to Grand Canonical Crystal Growth.
    Karmakar T; Piaggi PM; Perego C; Parrinello M
    J Chem Theory Comput; 2018 May; 14(5):2678-2683. PubMed ID: 29589924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.
    Tolonen LK; Bergenstråhle-Wohlert M; Sixta H; Wohlert J
    J Phys Chem B; 2015 Apr; 119(13):4739-48. PubMed ID: 25756596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique mechanism of facile polymorphic conversion of acetaminophen in aqueous medium.
    Gao Y; Olsen KW
    Mol Pharm; 2014 Sep; 11(9):3056-67. PubMed ID: 25111742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution of solid NaCl nanoparticles embedded in supersaturated water vapor probed by molecular dynamic simulations.
    Zasetsky AY; Sloan JJ; Svishchev IM
    J Phys Chem A; 2008 Apr; 112(14):3114-8. PubMed ID: 18311950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of the dissolution process of a cellulose triacetate-II nano-sized crystal in DMSO.
    Hayakawa D; Ueda K; Yamane C; Miyamoto H; Horii F
    Carbohydr Res; 2011 Dec; 346(18):2940-7. PubMed ID: 22063502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution behaviour of a nanoparticle in a microscale volume of solvent: thermodynamic and kinetic considerations.
    Vogelsberger W; Schmidt J
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():8-16. PubMed ID: 19558228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution study of nanocrystal powders of a poorly soluble drug by UV imaging and channel flow methods.
    Sarnes A; Østergaard J; Jensen SS; Aaltonen J; Rantanen J; Hirvonen J; Peltonen L
    Eur J Pharm Sci; 2013 Nov; 50(3-4):511-9. PubMed ID: 23999036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability of dissolution rates at constant undersaturation.
    Orkoula MG; Koutsoukos PG
    J Colloid Interface Sci; 2002 Sep; 253(1):185-9. PubMed ID: 16290845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory simulation of hydrogen-bonding structure and vibrational densities of states at the quartz (101)-water interface and its relation to dissolution as a function of solution pH and ionic strength.
    DelloStritto MJ; Kubicki J; Sofo JO
    J Phys Condens Matter; 2014 Jun; 26(24):244101. PubMed ID: 24862652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug dissolution rate measurements--evaluation of the rotating disc method.
    Kaunisto E; Nilsson B; Axelsson A
    Pharm Dev Technol; 2009; 14(4):400-8. PubMed ID: 19235631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems.
    Zhao Y; Liu X; Wang J; Zhang S
    J Phys Chem B; 2013 Aug; 117(30):9042-9. PubMed ID: 23829272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Prediction of the Crystal Growth Mechanism of Aspirin Using Molecular Simulations].
    Hatanaka T; Yoshihashi Y; Ito M; Terada K; Yonemochi E
    Yakugaku Zasshi; 2020; 140(7):913-921. PubMed ID: 32612056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.