These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25090423)

  • 1. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive.
    Collins AG; Frank MJ
    Psychol Rev; 2014 Jul; 121(3):337-66. PubMed ID: 25090423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine-dependent reinforcement of motor skill learning: evidence from Gilles de la Tourette syndrome.
    Palminteri S; Lebreton M; Worbe Y; Hartmann A; Lehéricy S; Vidailhet M; Grabli D; Pessiglione M
    Brain; 2011 Aug; 134(Pt 8):2287-301. PubMed ID: 21727098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actor-critic models of the basal ganglia: new anatomical and computational perspectives.
    Joel D; Niv Y; Ruppin E
    Neural Netw; 2002; 15(4-6):535-47. PubMed ID: 12371510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability in Action Selection Relates to Striatal Dopamine 2/3 Receptor Availability in Humans: A PET Neuroimaging Study Using Reinforcement Learning and Active Inference Models.
    Adams RA; Moutoussis M; Nour MM; Dahoun T; Lewis D; Illingworth B; Veronese M; Mathys C; de Boer L; Guitart-Masip M; Friston KJ; Howes OD; Roiser JP
    Cereb Cortex; 2020 May; 30(6):3573-3589. PubMed ID: 32083297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.
    Morita K; Jitsev J; Morrison A
    Behav Brain Res; 2016 Sep; 311():110-121. PubMed ID: 27173430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons.
    Tan CO; Bullock D
    J Neurophysiol; 2008 Oct; 100(4):2409-21. PubMed ID: 18715897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of learning-related dopamine signals in addiction vulnerability.
    Huys QJ; Tobler PN; Hasler G; Flagel SB
    Prog Brain Res; 2014; 211():31-77. PubMed ID: 24968776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach.
    Piray P; Keramati MM; Dezfouli A; Lucas C; Mokri A
    Neural Comput; 2010 Sep; 22(9):2334-68. PubMed ID: 20569176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mathematical models of decision making and learning].
    Ito M; Doya K
    Brain Nerve; 2008 Jul; 60(7):791-8. PubMed ID: 18646619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: evidence from a model-based fMRI study.
    Schonberg T; O'Doherty JP; Joel D; Inzelberg R; Segev Y; Daw ND
    Neuroimage; 2010 Jan; 49(1):772-81. PubMed ID: 19682583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human dorsal striatal activity during choice discriminates reinforcement learning behavior from the gambler's fallacy.
    Jessup RK; O'Doherty JP
    J Neurosci; 2011 Apr; 31(17):6296-304. PubMed ID: 21525269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational substrate for incentive salience.
    McClure SM; Daw ND; Montague PR
    Trends Neurosci; 2003 Aug; 26(8):423-8. PubMed ID: 12900173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond simple reinforcement learning: the computational neurobiology of reward-learning and valuation.
    O'Doherty JP
    Eur J Neurosci; 2012 Apr; 35(7):987-90. PubMed ID: 22487029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of reinforcement learning and optimal decision-making theories of the basal ganglia.
    Bogacz R; Larsen T
    Neural Comput; 2011 Apr; 23(4):817-51. PubMed ID: 21222528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural systems implicated in delayed and probabilistic reinforcement.
    Cardinal RN
    Neural Netw; 2006 Oct; 19(8):1277-301. PubMed ID: 16938431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glutamate hypothesis of reinforcement learning.
    Pennartz CM; McNaughton BL; Mulder AB
    Prog Brain Res; 2000; 126():231-53. PubMed ID: 11105650
    [No Abstract]   [Full Text] [Related]  

  • 18. A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients.
    Moustafa AA; Gluck MA
    J Cogn Neurosci; 2011 Jan; 23(1):151-67. PubMed ID: 20044893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reinforcement learning mechanism responsible for the valuation of free choice.
    Cockburn J; Collins AG; Frank MJ
    Neuron; 2014 Aug; 83(3):551-7. PubMed ID: 25066083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble algorithms in reinforcement learning.
    Wiering MA; van Hasselt H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):930-6. PubMed ID: 18632380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.