These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25090513)

  • 21. Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties.
    Liu D; Yang Y; Cheng Z; Huang H; Zhang B; Ling T; Shen Y
    Opt Express; 2013 Jun; 21(11):13084-93. PubMed ID: 23736562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of polarimetric lidar for the study of oriented ice plates in clouds.
    Del Guasta M; Vallar E; Riviere O; Castagnoli F; Venturi V; Morandi M
    Appl Opt; 2006 Jul; 45(20):4878-87. PubMed ID: 16807595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of crystal tilt on solar irradiance of cirrus clouds.
    Klotzsche S; Macke A
    Appl Opt; 2006 Feb; 45(5):1034-40. PubMed ID: 16512547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.
    Marais WJ; Holz RE; Hu YH; Kuehn RE; Eloranta EE; Willett RM
    Appl Opt; 2016 Oct; 55(29):8316-8334. PubMed ID: 27828081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.
    Xia H; Dou X; Shangguan M; Zhao R; Sun D; Wang C; Qiu J; Shu Z; Xue X; Han Y; Han Y
    Opt Express; 2014 Sep; 22(18):21775-89. PubMed ID: 25321553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of the lidar ratio for atmospheric aerosols with a 180 degrees backscatter nephelometer.
    Doherty SJ; Anderson TL; Charlson RJ
    Appl Opt; 1999 Mar; 38(9):1823-32. PubMed ID: 18305813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies.
    Sassen K; Knight NC; Takano Y; Heymsfield AJ
    Appl Opt; 1994 Jul; 33(21):4590-601. PubMed ID: 20935827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data.
    Ding J; Yang P; Holz RE; Platnick S; Meyer KG; Vaughan MA; Hu Y; King MD
    Opt Express; 2016 Jan; 24(1):620-36. PubMed ID: 26832292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar.
    Liu Z; Sugimoto N; Murayama T
    Appl Opt; 2002 May; 41(15):2760-7. PubMed ID: 12027162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar.
    Liu BY; Esselborn M; Wirth M; Fix A; Bi DC; Ehret G
    Appl Opt; 2009 Sep; 48(27):5143-54. PubMed ID: 19767932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Algorithm for Discriminating Hydrometeor Particle Types with a Synergistic Use of CloudSat and CALIPSO.
    Kikuchi M; Okamoto H; Sato K; Suzuki K; Cesana G; Hagihara Y; Takahashi N; Hayasaka T; Oki R
    J Geophys Res Atmos; 2017 Oct; 122(20):11022-11044. PubMed ID: 32818127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical design of low-cost polarimetric back-scatter sondes.
    Hamilton M
    Appl Opt; 2018 Jun; 57(16):4639-4648. PubMed ID: 29877373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses.
    Sassen K
    Appl Opt; 1991 Aug; 30(24):3421-8. PubMed ID: 20706407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lidar Ratio-Depolarization Ratio Relations of Atmospheric Dust Aerosols: The Super-Spheroid Model and High Spectral Resolution Lidar Observations.
    Kong S; Sato K; Bi L
    J Geophys Res Atmos; 2022 Feb; 127(4):e2021JD035629. PubMed ID: 35865334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Airborne CO(2) coherent lidar for measurements of atmospheric aerosol and cloud backscatter.
    Menzies RT; Tratt DM
    Appl Opt; 1994 Aug; 33(24):5698-711. PubMed ID: 20935971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Power laws for backscattering by ice crystals of cirrus clouds.
    Konoshonkin A; Borovoi A; Kustova N; Reichardt J
    Opt Express; 2017 Sep; 25(19):22341-22346. PubMed ID: 29041546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical and numerical investigations of the polarization properties of a lidar signal scattered by a set of oriented ice plates.
    Popov AA; Shefer OV
    Appl Opt; 1995 Mar; 34(9):1488-92. PubMed ID: 21037685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements.
    Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J
    Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.