These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25090572)

  • 1. Architecture and applications of a high resolution gated SPAD image sensor.
    Burri S; Maruyama Y; Michalet X; Regazzoni F; Bruschini C; Charbon E
    Opt Express; 2014 Jul; 22(14):17573-89. PubMed ID: 25090572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon-Counting Arrays for Time-Resolved Imaging.
    Antolovic IM; Burri S; Hoebe RA; Maruyama Y; Bruschini C; Charbon E
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27367697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration.
    Sun P; Ishihara R; Charbon E
    Opt Express; 2016 Feb; 24(4):3734-48. PubMed ID: 26907030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy.
    Krstajić N; Levitt J; Poland S; Ameer-Beg S; Henderson R
    Opt Express; 2015 Mar; 23(5):5653-69. PubMed ID: 25836796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widefield High Frame Rate Single-Photon SPAD Imagers for SPIM-FCS.
    Buchholz J; Krieger J; Bruschini C; Burri S; Ardelean A; Charbon E; Langowski J
    Biophys J; 2018 May; 114(10):2455-2464. PubMed ID: 29753448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging.
    Burri S; Powolny F; Bruschini C; Michalet X; Regazzoni F; Charbon E
    Proc SPIE Int Soc Opt Eng; 2014 Apr; 9141():. PubMed ID: 28626292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 512×512 SPAD Image Sensor with Integrated Gating for Widefield FLIM.
    Ulku AC; Bruschini C; Antolovic IM; Charbon E; Kuo Y; Ankri R; Weiss S; Michalet X
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 31156324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications.
    Kufcsák A; Erdogan A; Walker R; Ehrlich K; Tanner M; Megia-Fernandez A; Scholefield E; Emanuel P; Dhaliwal K; Bradley M; Henderson RK; Krstajić N
    Opt Express; 2017 May; 25(10):11103-11123. PubMed ID: 28788793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR).
    Villa F; Severini F; Madonini F; Zappa F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34206130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy.
    Gyongy I; Davies A; Gallinet B; Dutton NAW; Duncan RR; Rickman C; Henderson RK; Dalgarno PA
    Opt Express; 2018 Feb; 26(3):2280-2291. PubMed ID: 29401768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Compact Analog Histogramming SPAD-Based CMOS Chip for Time-Resolved Fluorescence.
    Dieguez A; Canals J; Franch N; Dieguez J; Alonso O; Vila A
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):343-351. PubMed ID: 30640628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System.
    Rae BR; Muir KR; Gong Z; McKendry J; Girkin JM; Gu E; Renshaw D; Dawson MD; Henderson RK
    Sensors (Basel); 2009; 9(11):9255-74. PubMed ID: 22291564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays.
    Krstajić N; Poland S; Levitt J; Walker R; Erdogan A; Ameer-Beg S; Henderson RK
    Opt Lett; 2015 Sep; 40(18):4305-8. PubMed ID: 26371922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing and probability of crosstalk in a dense CMOS SPAD array in pulsed TOF applications.
    Jahromi S; Kostamovaara J
    Opt Express; 2018 Aug; 26(16):20622-20632. PubMed ID: 30119371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors.
    Perenzoni M; Pancheri L; Stoppa D
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new single-photon avalanche diode in 90nm standard CMOS technology.
    Karami MA; Gersbach M; Yoon HJ; Charbon E
    Opt Express; 2010 Oct; 18(21):22158-66. PubMed ID: 20941117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series.
    Buchholz J; Krieger JW; Mocsár G; Kreith B; Charbon E; Vámosi G; Kebschull U; Langowski J
    Opt Express; 2012 Jul; 20(16):17767-82. PubMed ID: 23038328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CMOS Time-to-Digital Converters for Biomedical Imaging Applications.
    Scott R; Jiang W; Deen MJ
    IEEE Rev Biomed Eng; 2023; 16():627-652. PubMed ID: 34166201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.