These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25090588)
1. Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms. Peralta DV; He J; Wheeler DA; Zhang JZ; Tarr MA J Microencapsul; 2014; 31(8):824-31. PubMed ID: 25090588 [TBL] [Abstract][Full Text] [Related]
2. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells. Peralta DV; Heidari Z; Dash S; Tarr MA ACS Appl Mater Interfaces; 2015 Apr; 7(13):7101-11. PubMed ID: 25768122 [TBL] [Abstract][Full Text] [Related]
3. A single multifunctional nanoplatform based on upconversion luminescence and gold nanorods. Huang Y; Rosei F; Vetrone F Nanoscale; 2015 Mar; 7(12):5178-85. PubMed ID: 25699524 [TBL] [Abstract][Full Text] [Related]
4. A facile strategy to functionalize gold nanorods with polycation brushes for biomedical applications. Yan P; Zhao N; Hu H; Lin X; Liu F; Xu FJ Acta Biomater; 2014 Aug; 10(8):3786-94. PubMed ID: 24814878 [TBL] [Abstract][Full Text] [Related]
5. Use of gold nanoparticles as crosslink agent to form chitosan nanocapsules: study of the direct interaction in aqueous solutions. Prado-Gotor R; López-Pérez G; Martín MJ; Cabrera-Escribano F; Franconetti A J Inorg Biochem; 2014 Jun; 135():77-85. PubMed ID: 24681548 [TBL] [Abstract][Full Text] [Related]
6. Nanometric resolution in the hydrodynamic size analysis of ligand-stabilized gold nanorods. Mehtala JG; Wei A Langmuir; 2014 Nov; 30(46):13737-43. PubMed ID: 25349895 [TBL] [Abstract][Full Text] [Related]
7. Mechanofabrication of pancake and rodlike nanostructures from deformable nanoparticle aggregates. Browne KP; Klajn R; Villa J; Grzybowski BA Small; 2009 Dec; 5(23):2656-8. PubMed ID: 19771567 [No Abstract] [Full Text] [Related]
8. Gold nanoparticles for photothermally controlled drug release. Guerrero AR; Hassan N; Escobar CA; Albericio F; Kogan MJ; Araya E Nanomedicine (Lond); 2014 Sep; 9(13):2023-39. PubMed ID: 25343351 [TBL] [Abstract][Full Text] [Related]
9. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy. Li H; Liu X; Huang N; Ren K; Jin Q; Ji J ACS Appl Mater Interfaces; 2014; 6(21):18930-7. PubMed ID: 25286378 [TBL] [Abstract][Full Text] [Related]
10. Colloidally stable and surfactant-free protein-coated gold nanorods in biological media. Tebbe M; Kuttner C; Männel M; Fery A; Chanana M ACS Appl Mater Interfaces; 2015 Mar; 7(10):5984-91. PubMed ID: 25706195 [TBL] [Abstract][Full Text] [Related]
11. Formation and plasmonic response of self-assembled layers of colloidal gold nanorods and branched gold nanoparticles. Schulz KM; Abb S; Fernandes R; Abb M; Kanaras AG; Muskens OL Langmuir; 2012 Jun; 28(24):8874-80. PubMed ID: 22401603 [TBL] [Abstract][Full Text] [Related]
13. Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. Ojea-Jiménez I; García-Fernández L; Lorenzo J; Puntes VF ACS Nano; 2012 Sep; 6(9):7692-702. PubMed ID: 22870984 [TBL] [Abstract][Full Text] [Related]
14. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Vankayala R; Lin CC; Kalluru P; Chiang CS; Hwang KC Biomaterials; 2014 Jul; 35(21):5527-38. PubMed ID: 24731706 [TBL] [Abstract][Full Text] [Related]
15. Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity. Cai H; Yao P Colloids Surf B Biointerfaces; 2014 Nov; 123():900-6. PubMed ID: 25466455 [TBL] [Abstract][Full Text] [Related]
16. Metal-ion induced transition from multi- to single-bilayer tubes in histidine bearing lipids and formation of monodisperse Au nanoparticles. Nishimura T; Matsuo T; Sakurai K Phys Chem Chem Phys; 2011 Sep; 13(35):15899-905. PubMed ID: 21829827 [TBL] [Abstract][Full Text] [Related]
17. Inhibitation of cellular toxicity of gold nanoparticles by surface encapsulation of silica shell for hepatocarcinoma cell application. Zeng Q; Zhang Y; Ji W; Ye W; Jiang Y; Song J ACS Appl Mater Interfaces; 2014; 6(21):19327-35. PubMed ID: 25313634 [TBL] [Abstract][Full Text] [Related]
18. Tuning Optical Properties of Encapsulated Clusters of Gold Nanoparticles through Stimuli-Triggered Controlled Aggregation. Dergunov SA; Kim MD; Shmakov SN; Richter AG; Weigand S; Pinkhassik E Chemistry; 2016 Jun; 22(23):7702-5. PubMed ID: 27159384 [TBL] [Abstract][Full Text] [Related]
19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
20. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers. Tamma VA; Cui Y; Zhou J; Park W Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]