These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25090623)

  • 1. Research advances and challenges in one-dimensional modeling of secondary settling tanks--a critical review.
    Li B; Stenstrom MK
    Water Res; 2014 Nov; 65():40-63. PubMed ID: 25090623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.
    Bürger R; Diehl S; Farås S; Nopens I; Torfs E
    Water Sci Technol; 2013; 68(1):192-208. PubMed ID: 23823556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic one-dimensional modeling of secondary settling tanks and design impacts of sizing decisions.
    Li B; Stenstrom MK
    Water Res; 2014 Mar; 50():160-70. PubMed ID: 24374127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review.
    Gao H; Stenstrom MK
    Water Environ Res; 2020 Jun; 92(6):796-820. PubMed ID: 31782964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On constitutive functions for hindered settling velocity in 1-D settler models: Selection of appropriate model structure.
    Torfs E; Balemans S; Locatelli F; Diehl S; Bürger R; Laurent J; François P; Nopens I
    Water Res; 2017 Mar; 110():38-47. PubMed ID: 27984804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems.
    Patziger M; Kainz H; Hunze M; Józsa J
    Water Res; 2012 May; 46(7):2415-24. PubMed ID: 22365174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A force-based mechanistic model for describing activated sludge settling process.
    Xu G; Yin F; Xu Y; Yu HQ
    Water Res; 2017 Dec; 127():118-126. PubMed ID: 29035765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new settling velocity model to describe secondary sedimentation.
    Ramin E; Wágner DS; Yde L; Binning PJ; Rasmussen MR; Mikkelsen PS; Plósz BG
    Water Res; 2014 Dec; 66():447-458. PubMed ID: 25243657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking.
    Wágner DS; Ramin E; Szabo P; Dechesne A; Plósz BG
    Water Res; 2015 Jul; 78():121-32. PubMed ID: 25935367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindered and compression solid settling functions - Sensor data collection, practical model identification and validation.
    Plósz BG; Climent J; Griffin CT; Chiva S; Mukherjee R; Penkarski-Rodon E; Clarke M; Valverde-Pérez B
    Water Res; 2020 Oct; 184():116129. PubMed ID: 32755732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of wind in secondary settling tanks for wastewater treatment - A computational fluid dynamics study. Part II: Rectangular secondary settling tanks.
    Gao H; Stenstrom MK
    Water Environ Res; 2020 Apr; 92(4):551-561. PubMed ID: 31549753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for characterizing the complete settling process of activated sludge.
    Zhang D; Li Z; Lu P; Zhang T; Xu D
    Water Res; 2006 Aug; 40(14):2637-44. PubMed ID: 16839581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulence and interphase mass diffusion assumptions on the performance of secondary settling tanks.
    Gao H; Stenstrom MK
    Water Environ Res; 2019 Feb; 91(2):101-110. PubMed ID: 30659737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
    Ekama GA; Marais P
    Water Sci Technol; 2004; 50(7):195-204. PubMed ID: 15553476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.
    Ramin E; Sin G; Mikkelsen PS; Plósz BG
    Water Res; 2014 Oct; 63():209-21. PubMed ID: 25003213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of wind in secondary settling tanks for wastewater treatment-A computational fluid dynamics study. Part I: Circular secondary settling tanks.
    Gao H; Stenstrom MK
    Water Environ Res; 2020 Apr; 92(4):541-550. PubMed ID: 31549750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an improved model for settling velocity and evaluation of the settleability characteristics.
    Bakiri Z; Nacef S
    Water Environ Res; 2020 Jul; 92(7):1089-1098. PubMed ID: 32034981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysing sludge balance in activated sludge systems with a novel mass transport model.
    Patziger M; Kainz H; Hunze M; Józsa J
    Water Sci Technol; 2008; 57(9):1413-9. PubMed ID: 18496007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the sources of uncertainty when calculating the limiting flux in secondary settling tanks using iCFD.
    Guyonvarch E; Ramin E; Kulahci M; Plósz BG
    Water Sci Technol; 2020 Jan; 81(2):241-252. PubMed ID: 32333657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.