BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25090957)

  • 1. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity.
    Villéger R; Saad N; Grenier K; Falourd X; Foucat L; Urdaci MC; Bressollier P; Ouk TS
    Antonie Van Leeuwenhoek; 2014 Oct; 106(4):693-706. PubMed ID: 25090957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Lipoteichoic Acid from the Genus
    Matsuzaki C; Shiraishi T; Chiou TY; Nakashima Y; Higashimura Y; Yokota SI; Yamamoto K; Takahashi T
    Appl Environ Microbiol; 2022 Apr; 88(8):e0019022. PubMed ID: 35380450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus.
    Morath S; Geyer A; Hartung T
    J Exp Med; 2001 Feb; 193(3):393-7. PubMed ID: 11157059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes.
    Wörmann ME; Corrigan RM; Simpson PJ; Matthews SJ; Gründling A
    Mol Microbiol; 2011 Feb; 79(3):566-83. PubMed ID: 21255105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells.
    Jeong JH; Jang S; Jung BJ; Jang KS; Kim BG; Chung DK; Kim H
    Immunobiology; 2015 Apr; 220(4):460-6. PubMed ID: 25433634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis and immunostimulatory potency of lipoteichoic acids isolated from three
    Gisch N; Auger JP; Thomsen S; Roy D; Xu J; Schwudke D; Gottschalk M
    J Biol Chem; 2018 Aug; 293(31):12011-12025. PubMed ID: 29884769
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids.
    Ryu YH; Baik JE; Yang JS; Kang SS; Im J; Yun CH; Kim DW; Lee K; Chung DK; Ju HR; Han SH
    Int Immunopharmacol; 2009 Jan; 9(1):127-33. PubMed ID: 19013542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids.
    Keller R; Fischer W; Keist R; Bassetti S
    Infect Immun; 1992 Sep; 60(9):3664-72. PubMed ID: 1500175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoprotein lipase and hydrofluoric acid deactivate both bacterial lipoproteins and lipoteichoic acids, but platelet-activating factor-acetylhydrolase degrades only lipoteichoic acids.
    Seo HS; Nahm MH
    Clin Vaccine Immunol; 2009 Aug; 16(8):1187-95. PubMed ID: 19553557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure/function relationships of lipoteichoic acids.
    Morath S; von Aulock S; Hartung T
    J Endotoxin Res; 2005; 11(6):348-56. PubMed ID: 16303090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of teichoic acids from Lactobacillus brevis.
    Sánchez Carballo PM; Vilen H; Palva A; Holst O
    Carbohydr Res; 2010 Feb; 345(4):538-42. PubMed ID: 20034620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages.
    Hong SW; Baik JE; Kang SS; Yun CH; Seo DG; Han SH
    Mol Immunol; 2014 Feb; 57(2):284-91. PubMed ID: 24216318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipoteichoic acid from Lactobacillus plantarum induces nitric oxide production in the presence of interferon-γ in murine macrophages.
    Kang SS; Ryu YH; Baik JE; Yun CH; Lee K; Chung DK; Han SH
    Mol Immunol; 2011 Sep; 48(15-16):2170-7. PubMed ID: 21835472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies of lipoteichoic acids from several Bacillus strains.
    Iwasaki H; Shimada A; Ito E
    J Bacteriol; 1986 Aug; 167(2):508-16. PubMed ID: 3733670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid.
    Palomino MM; Allievi MC; Gründling A; Sanchez-Rivas C; Ruzal SM
    Microbiology (Reading); 2013 Nov; 159(Pt 11):2416-2426. PubMed ID: 24014660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus.
    Fischer W; Rösel P; Koch HU
    J Bacteriol; 1981 May; 146(2):467-75. PubMed ID: 6111553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipoteichoic acid synthesis and function in gram-positive bacteria.
    Percy MG; Gründling A
    Annu Rev Microbiol; 2014; 68():81-100. PubMed ID: 24819367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of the lipoteichoic acids isolated from bovine mastitis Streptococcus uberis 233, Streptococcus dysgalactiae 2023 and Streptococcus agalactiae 0250.
    Czabańska A; Neiwert O; Lindner B; Leigh J; Holst O; Duda KA
    Carbohydr Res; 2012 Nov; 361():200-5. PubMed ID: 23036931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural decomposition and heterogeneity of commercial lipoteichoic Acid preparations.
    Morath S; Geyer A; Spreitzer I; Hermann C; Hartung T
    Infect Immun; 2002 Feb; 70(2):938-44. PubMed ID: 11796629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG.
    Perea Vélez M; Verhoeven TL; Draing C; Von Aulock S; Pfitzenmaier M; Geyer A; Lambrichts I; Grangette C; Pot B; Vanderleyden J; De Keersmaecker SC
    Appl Environ Microbiol; 2007 Jun; 73(11):3595-604. PubMed ID: 17434999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.