These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25091286)

  • 21. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm.
    Robinson N; Vinod AP; Ang KK; Tee KP; Guan CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2123-32. PubMed ID: 23446029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance Prediction for a Near-Infrared Spectroscopy-Brain-Computer Interface Using Resting-State Functional Connectivity of the Prefrontal Cortex.
    Shin J; Im CH
    Int J Neural Syst; 2018 Dec; 28(10):1850023. PubMed ID: 29914312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial bee colony algorithm for single-trial electroencephalogram analysis.
    Hsu WY; Hu YP
    Clin EEG Neurosci; 2015 Apr; 46(2):119-25. PubMed ID: 25392006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of classification accuracy of a time-frequency approach for an EEG-based brain-computer interface.
    Yamawaki N; Wilke C; Hue L; Liu Z; He B
    Methods Inf Med; 2007; 46(2):155-9. PubMed ID: 17347747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy.
    Lee MH; Kwon OY; Kim YJ; Kim HK; Lee YE; Williamson J; Fazli S; Lee SW
    Gigascience; 2019 May; 8(5):. PubMed ID: 30698704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors.
    Bundy DT; Wronkiewicz M; Sharma M; Moran DW; Corbetta M; Leuthardt EC
    J Neural Eng; 2012 Jun; 9(3):036011. PubMed ID: 22614631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of EEG signals to identify variations in attention during motor task execution.
    Aliakbaryhosseinabadi S; Kamavuako EN; Jiang N; Farina D; Mrachacz-Kersting N
    J Neurosci Methods; 2017 Jun; 284():27-34. PubMed ID: 28431949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A New PLV-Spatial Filtering to Improve the Classification Performance in BCI Systems.
    Martin-Chinea K; Gomez-Gonzalez JF; Acosta L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2275-2282. PubMed ID: 35947562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography.
    Boudria Y; Feltane A; Besio W
    J Neural Eng; 2014 Jun; 11(3):035014. PubMed ID: 24836436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.
    Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z
    Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatiotemporal source tuning filter bank for multiclass EEG based brain computer interfaces.
    Acharya S; Mollazadeh M; Murari K; Thakor N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():327-30. PubMed ID: 17946815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Wadsworth Center brain-computer interface (BCI) research and development program.
    Wolpaw JR; McFarland DJ; Vaughan TM; Schalk G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):204-7. PubMed ID: 12899275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
    Nakanishi M; Wang Y; Chen X; Wang YT; Gao X; Jung TP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):104-112. PubMed ID: 28436836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.