These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25091344)

  • 1. Wireless EEG with individualized channel layout enables efficient motor imagery training.
    Zich C; De Vos M; Kranczioch C; Debener S
    Clin Neurophysiol; 2015 Apr; 126(4):698-710. PubMed ID: 25091344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis.
    Gonzalez-Rosa JJ; Natali F; Tettamanti A; Cursi M; Velikova S; Comi G; Gatti R; Leocani L
    Behav Brain Res; 2015 Mar; 281():290-300. PubMed ID: 25532912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery.
    Zich C; Debener S; Kranczioch C; Bleichner MG; Gutberlet I; De Vos M
    Neuroimage; 2015 Jul; 114():438-47. PubMed ID: 25887263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient resting-state EEG network facilitates motor imagery performance.
    Zhang R; Yao D; Valdés-Sosa PA; Li F; Li P; Zhang T; Ma T; Li Y; Xu P
    J Neural Eng; 2015 Dec; 12(6):066024. PubMed ID: 26529439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.
    Bai O; Lin P; Huang D; Fei DY; Floeter MK
    Clin Neurophysiol; 2010 Aug; 121(8):1293-303. PubMed ID: 20347612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.