These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 25091348)
1. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: comparison of their stability in an accelerated test. Herrera M; Tattini V; Pitombo RN; Gutiérrez JM; Borgognoni C; Vega-Baudrit J; Solera F; Cerdas M; Segura A; Villalta M; Vargas M; León G Toxicon; 2014 Nov; 90():56-63. PubMed ID: 25091348 [TBL] [Abstract][Full Text] [Related]
2. Freeze-dried EchiTAb+ICP antivenom formulated with sucrose is more resistant to thermal stress than the liquid formulation stabilized with sorbitol. Herrera M; Segura Á; Sánchez A; Sánchez A; Vargas M; Villalta M; Harrison RA; Gutiérrez JM; León G Toxicon; 2017 Jul; 133():123-126. PubMed ID: 28478057 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical characterization of commercial freeze-dried snake antivenoms. Herrera M; Solano D; Gómez A; Villalta M; Vargas M; Sánchez A; Gutiérrez JM; León G Toxicon; 2017 Feb; 126():32-37. PubMed ID: 27956243 [TBL] [Abstract][Full Text] [Related]
5. Stability of equine IgG antivenoms obtained by caprylic acid precipitation: towards a liquid formulation stable at tropical room temperature. Segura A; Herrera M; González E; Vargas M; Solano G; Gutiérrez JM; León G Toxicon; 2009 May; 53(6):609-15. PubMed ID: 19673074 [TBL] [Abstract][Full Text] [Related]
6. Investigation of freeze/thaw-related quality attributes of a liquid biopharmaceutical formulation: the role of saccharide excipients. Zhou R; Schlam RF; Yin S; Gandhi RB; Adams ML PDA J Pharm Sci Technol; 2012; 66(3):221-35. PubMed ID: 22634588 [TBL] [Abstract][Full Text] [Related]
7. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System. Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647 [TBL] [Abstract][Full Text] [Related]
8. Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Passot S; Fonseca F; Alarcon-Lorca M; Rolland D; Marin M Eur J Pharm Biopharm; 2005 Aug; 60(3):335-48. PubMed ID: 15894475 [TBL] [Abstract][Full Text] [Related]
9. Formulation of a liquid ovine Fab-based antivenom for the treatment of envenomation by the Nigerian carpet viper (Echis ocellatus). Al-Abdulla I; Garnvwa JM; Rawat S; Smith DS; Landon J; Nasidi A Toxicon; 2003 Sep; 42(4):399-404. PubMed ID: 14505940 [TBL] [Abstract][Full Text] [Related]
10. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying. Tang XC; Pikal MJ Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019 [TBL] [Abstract][Full Text] [Related]
11. Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: Implications for the mechanism of protein stabilization in the solid state. Chang LL; Shepherd D; Sun J; Tang XC; Pikal MJ J Pharm Sci; 2005 Jul; 94(7):1445-55. PubMed ID: 15920766 [TBL] [Abstract][Full Text] [Related]
12. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates. Horn J; Schanda J; Friess W Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899 [TBL] [Abstract][Full Text] [Related]
13. The effect of annealing on the stability of amorphous solids: chemical stability of freeze-dried moxalactam. Abdul-Fattah AM; Dellerman KM; Bogner RH; Pikal MJ J Pharm Sci; 2007 May; 96(5):1237-50. PubMed ID: 17455341 [TBL] [Abstract][Full Text] [Related]
14. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG; Mahler HC; Langer K Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy. Kasraian K; Spitznagel TM; Juneau JA; Yim K Pharm Dev Technol; 1998 May; 3(2):233-9. PubMed ID: 9653761 [TBL] [Abstract][Full Text] [Related]
16. Formulation and stability of freeze-dried proteins: effects of moisture and oxygen on the stability of freeze-dried formulations of human growth hormone. Pikal MJ; Dellerman K; Roy ML Dev Biol Stand; 1992; 74():21-37; discussion 37-8. PubMed ID: 1592171 [TBL] [Abstract][Full Text] [Related]
17. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability. Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980 [TBL] [Abstract][Full Text] [Related]
18. The effect of mannitol crystallization in mannitol-sucrose systems on LDH stability during freeze-drying. Al-Hussein A; Gieseler H J Pharm Sci; 2012 Jul; 101(7):2534-44. PubMed ID: 22535541 [TBL] [Abstract][Full Text] [Related]
19. Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage. Lueckel B; Helk B; Bodmer D; Leuenberger H Pharm Dev Technol; 1998 Aug; 3(3):337-46. PubMed ID: 9742554 [TBL] [Abstract][Full Text] [Related]
20. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]