BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2509167)

  • 1. Societal synchronization in groups of rats or quail submitted to various lighting regimens.
    Stupfel M; Gourlet V; Perramon A; Monvoisin JL; Court L
    Chronobiologia; 1989; 16(3):215-28. PubMed ID: 2509167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rats grouping and the circadian and ultradian synchronization of their carbon dioxide emission by a light-dark 12:12 h alternation.
    Gourlet V; Stupfel M; Perramon A
    Chronobiologia; 1992; 19(3-4):151-61. PubMed ID: 1478114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultradian and circadian compartmentalization of respiratory and metabolic exchanges in small laboratory vertebrates.
    Stupfel M; Gourlet V; Perramon A; Mérat P; Court L
    Chronobiologia; 1990; 17(4):275-304. PubMed ID: 2128229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultradian and circadian CO2 emission variations in nocturnal and diurnal animals exposed to a light stimulus.
    Stupfel M; Gourlet V; Perramon A; Lemercerre C
    Comp Biochem Physiol A Comp Physiol; 1989; 94(3):415-25. PubMed ID: 2574093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory activity variations induced in groups of LD 12:12 synchronized Sprague-Dawley rats by a 100 dB white noise emitted at 12-h intervals.
    Stupfel M; Molin D; Thierry H; Busnel MC
    Chronobiologia; 1980; 7(3):337-42. PubMed ID: 6778676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic analysis of ultradian (40 min less than tau less than 24h) respiratory variations in laboratory vertebrates of various circadian activities.
    Stupfel M; Gourlet V; Court L; Mestries J; Perramon A; Mérat P
    Chronobiologia; 1987; 14(4):365-75. PubMed ID: 3128433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian organization in Japanese quail.
    Underwood H; Siopes T
    J Exp Zool; 1984 Dec; 232(3):557-66. PubMed ID: 6520587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the light regimen on the circadian rhythm of serum lipids in the laboratory rat.
    Ahlers I; Ahlersová E; Kapuriková K; Toropila M; Smajda B
    Physiol Bohemoslov; 1982; 31(1):75-82. PubMed ID: 6461874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian activity rhythms in hamsters and rats treated with imipramine in the drinking water.
    Aschoff J
    Chronobiologia; 1989; 16(1):9-20. PubMed ID: 2721315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of constant light and darkness on the circadian rhythms in rats. II. Plasma renin activity and insulin concentration.
    Ikonomov OC; Stoynev AG; Shisheva AC; Tarkolev NT
    Acta Physiol Pharmacol Bulg; 1985; 11(1):55-61. PubMed ID: 3898723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: role of pineal.
    Rani S; Singh S; Malik S; Singh J; Kumar V
    Chronobiol Int; 2009 May; 26(4):653-65. PubMed ID: 19444747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aging on circadian and ultradian respiratory rhythms of rats synchronized by an LD12:12 lighting (L = 100 lx).
    Stupfel M; Gourlet V; Court L
    Gerontology; 1986; 32(2):81-90. PubMed ID: 3710172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starvation and respiratory rhythmic behavior in groups of light-dark synchronized Sprague-Dawley rats.
    Stupfel M; Gourlet V; Court L; Demaria Pesce VH
    Physiol Behav; 1986; 38(2):265-74. PubMed ID: 3099319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Socially adjusted synchrony in the activity profiles of common marmosets in light-dark conditions.
    Melo P; Gonçalves B; Menezes A; Azevedo C
    Chronobiol Int; 2013 Jul; 30(6):818-27. PubMed ID: 23767997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of constant light and darkness on the circadian rhythms in rats: I. Food and water intake, urine output and electrolyte excretion.
    Stoynev AG; Ikonomov OC
    Acta Physiol Pharmacol Bulg; 1983; 9(3):58-64. PubMed ID: 6670573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ultradian (between 5 and 70 minutes) respiratory (VO2, VCO2) rhythms of 4 small vertebrates used in biomedical research].
    Stupfel M; Davergne M; Perramon A; Lemercerre C; Gourlet V
    C R Seances Acad Sci D; 1979 Oct; 289(9):675-8. PubMed ID: 118819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ultradian and circadian oscillations of carbon dioxide production by various endotherms.
    Stupfel M; Gourlet V; Perramon A; Mérat P; Putet G; Court L
    Am J Physiol; 1995 Jan; 268(1 Pt 2):R253-65. PubMed ID: 7840329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian organization of a subarctic rodent, the northern red-backed vole (Clethrionomys rutilus).
    Tavernier RJ; Largen AL; Bult-Ito A
    J Biol Rhythms; 2004 Jun; 19(3):238-47. PubMed ID: 15155010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in melatonin binding sites under artificial light-dark, constant light and constant dark conditions in the masu salmon brain.
    Amano M; Iigo M; Kitamura S; Amiya N; Yamamori K
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Aug; 144(4):509-13. PubMed ID: 16759892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.