BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 25091901)

  • 21. The endoplasmic reticulum sulfhydryl oxidase Ero1β drives efficient oxidative protein folding with loose regulation.
    Wang L; Zhu L; Wang CC
    Biochem J; 2011 Feb; 434(1):113-21. PubMed ID: 21091435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum.
    Tavender TJ; Bulleid NJ
    Antioxid Redox Signal; 2010 Oct; 13(8):1177-87. PubMed ID: 20486761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin.
    Zito E; Melo EP; Yang Y; Wahlander Å; Neubert TA; Ron D
    Mol Cell; 2010 Dec; 40(5):787-97. PubMed ID: 21145486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding.
    Sato Y; Kojima R; Okumura M; Hagiwara M; Masui S; Maegawa K; Saiki M; Horibe T; Suzuki M; Inaba K
    Sci Rep; 2013; 3():2456. PubMed ID: 23949117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli.
    Knoke LR; Zimmermann J; Lupilov N; Schneider JF; Celebi B; Morgan B; Leichert LI
    Redox Biol; 2023 Aug; 64():102800. PubMed ID: 37413765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Balanced Ero1 activation and inactivation establishes ER redox homeostasis.
    Kim S; Sideris DP; Sevier CS; Kaiser CA
    J Cell Biol; 2012 Mar; 196(6):713-25. PubMed ID: 22412017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative protein folding in the mammalian endoplasmic reticulum.
    Jessop CE; Chakravarthi S; Watkins RH; Bulleid NJ
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):655-8. PubMed ID: 15493980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ero1 and redox homeostasis in the endoplasmic reticulum.
    Sevier CS; Kaiser CA
    Biochim Biophys Acta; 2008 Apr; 1783(4):549-56. PubMed ID: 18191641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooperative Protein Folding by Two Protein Thiol Disulfide Oxidoreductases and 1 in Soybean.
    Matsusaki M; Okuda A; Masuda T; Koishihara K; Mita R; Iwasaki K; Hara K; Naruo Y; Hirose A; Tsuchi Y; Urade R
    Plant Physiol; 2016 Feb; 170(2):774-89. PubMed ID: 26645455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation.
    Hatahet F; Ruddock LW
    Antioxid Redox Signal; 2009 Nov; 11(11):2807-50. PubMed ID: 19476414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase.
    Schwaller M; Wilkinson B; Gilbert HF
    J Biol Chem; 2003 Feb; 278(9):7154-9. PubMed ID: 12486139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of the thiol/disulfide centers and peptide binding site in the chaperone and anti-chaperone activities of protein disulfide isomerase.
    Puig A; Lyles MM; Noiva R; Gilbert HF
    J Biol Chem; 1994 Jul; 269(29):19128-35. PubMed ID: 7913469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathways for protein disulphide bond formation.
    Frand AR; Cuozzo JW; Kaiser CA
    Trends Cell Biol; 2000 May; 10(5):203-10. PubMed ID: 10754564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI).
    Masui S; Vavassori S; Fagioli C; Sitia R; Inaba K
    J Biol Chem; 2011 May; 286(18):16261-71. PubMed ID: 21398518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.
    Kulp MS; Frickel EM; Ellgaard L; Weissman JS
    J Biol Chem; 2006 Jan; 281(2):876-84. PubMed ID: 16368681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum.
    van Lith M; Hartigan N; Hatch J; Benham AM
    J Biol Chem; 2005 Jan; 280(2):1376-83. PubMed ID: 15475357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum.
    Soares Moretti AI; Martins Laurindo FR
    Arch Biochem Biophys; 2017 Mar; 617():106-119. PubMed ID: 27889386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Folding in the Presence of Water-Soluble Cyclic Diselenides with Novel Oxidoreductase and Isomerase Activities.
    Arai K; Ueno H; Asano Y; Chakrabarty G; Shimodaira S; Mugesh G; Iwaoka M
    Chembiochem; 2018 Feb; 19(3):207-211. PubMed ID: 29197144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential cooperative enzymatic activities of protein disulfide isomerase family in protein folding.
    Satoh M; Shimada A; Kashiwai A; Saga S; Hosokawa M
    Cell Stress Chaperones; 2005; 10(3):211-20. PubMed ID: 16184766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.