BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 25092048)

  • 1. L-Leucine for gold nanoparticles synthesis and their cytotoxic effects evaluation.
    Berghian-Grosan C; Olenic L; Katona G; Perde-Schrepler M; Vulcu A
    Amino Acids; 2014 Nov; 46(11):2545-52. PubMed ID: 25092048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of morin-conjugated Au nanoparticles: exploring the interaction efficiency with BSA using spectroscopic methods.
    Yue HL; Hu YJ; Huang HG; Jiang S; Tu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():402-10. PubMed ID: 24810026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach.
    Gan PP; Ng SH; Huang Y; Li SF
    Bioresour Technol; 2012 Jun; 113():132-5. PubMed ID: 22297042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized gold nanoparticles and films stabilized by in situ formed polyeugenol.
    Milczarek G; Ciszewski A
    Colloids Surf B Biointerfaces; 2012 Feb; 90():53-7. PubMed ID: 22019258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles.
    Sharma B; Purkayastha DD; Hazra S; Thajamanbi M; Bhattacharjee CR; Ghosh NN; Rout J
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2559-65. PubMed ID: 24942533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of ultra-small cysteine-capped gold nanoparticles by pH switching of the Au(I)-cysteine polymer.
    Cappellari PS; Buceta D; Morales GM; Barbero CA; Sergio Moreno M; Giovanetti LJ; Ramallo-López JM; Requejo FG; Craievich AF; Planes GA
    J Colloid Interface Sci; 2015 Mar; 441():17-24. PubMed ID: 25485807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic.
    Liu Z; Zu Y; Fu Y; Meng R; Guo S; Xing Z; Tan S
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):311-6. PubMed ID: 19969442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.
    Aswathy Aromal S; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1-5. PubMed ID: 22743607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length.
    Miranda A; Malheiro E; Skiba E; Quaresma P; Carvalho PA; Eaton P; de Castro B; Shelnutt JA; Pereira E
    Nanoscale; 2010 Oct; 2(10):2209-16. PubMed ID: 20714654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens.
    Borase HP; Patil CD; Salunkhe RB; Suryawanshi RK; Salunke BK; Patil SV
    Int J Cosmet Sci; 2014 Dec; 36(6):571-8. PubMed ID: 25124731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation behavior of chitosan chains in the 'green' synthesis of gold nanoparticles.
    Sun C; Qu R; Chen H; Ji C; Wang C; Sun Y; Wang B
    Carbohydr Res; 2008 Oct; 343(15):2595-9. PubMed ID: 18619580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile and rapid thermo-regulated biomineralization of gold by pullulan and study of its thermodynamic parameters.
    Choudhury AR; Malhotra A; Bhattacharjee P; Prasad GS
    Carbohydr Polym; 2014 Jun; 106():154-9. PubMed ID: 24721063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
    Philip D; Unni C; Aromal SA; Vidhu VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of L-phenylalanine stabilized gold nanoparticles and their thermal stability.
    Nayak NC; Shin K
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3512-6. PubMed ID: 17252801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of stainless steel assisted bare gold nanoparticles and their analytical potential.
    López-Lorente AI; Simonet BM; Valcárcel M; Eppler S; Schindl R; Kranz C; Mizaikoff B
    Talanta; 2014 Jan; 118():321-7. PubMed ID: 24274303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system.
    Cui R; Zhang MX; Tian ZQ; Zhang ZL; Pang DW
    Nanoscale; 2010 Oct; 2(10):2120-5. PubMed ID: 20820640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent.
    Ahmed KB; Kalla D; Uppuluri KB; Anbazhagan V
    Carbohydr Polym; 2014 Nov; 112():539-45. PubMed ID: 25129779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.